This paper discusses the problem of control constraint realization applied to generic underactuated multibody systems. The conditions for the realization are presented. Focus is placed on the tangent realization of the control constraint. An alternative condition is formulated, based on the practical observation that differential-algebraic equations need to be integrated using implicit algorithms, thus naturally leading to the solution of the problem in form of matrix pencil. The analogy with the representation of linear systems in Laplace’s domain is also discussed. The formulation is applied to the solution of simple, yet illustrative problems, related to rigid and deformable bodies. Some implications of considering deformable continua are addressed.

1.
Laulusa
,
A.
, and
Bauchau
,
O. A.
, 2008, “
Review of Classical Approaches for Constraint Enforcement in Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
1555-1423,
3
(
1
), p.
011004
.
2.
Chen
,
Y. -H.
, 2005, “
Mechanical Systems Under Servo Constraints: The Lagrange’s Approach
,”
Mechatronics
0957-4158,
15
, pp.
317
337
.
3.
Chen
,
Y. -H.
, 2008, “
Equations of Motion of Mechanical Systems Under Servo Constraints: The Maggi Approach
,”
Mechatronics
0957-4158,
18
, pp.
208
217
.
4.
Wang
,
J.
, 1990, “
Inverse Dynamics of Constrained Multibody Systems
,”
ASME J. Appl. Mech.
0021-8936,
57
, pp.
750
757
.
5.
Golubev
,
Y. F.
, 2001, “
Mechanical Systems With Servoconstraints
,”
J. Appl. Math. Mech.
0021-8928,
65
(
2
), pp.
205
217
.
6.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
, 1997, “
Dynamics and Control of Mechanical Systems in Partly Specified Motion
,”
J. Franklin Inst.
0016-0032,
334
(
3
), pp.
407
426
.
7.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
, 2004, “
A Geometric Approach to Solving Problem of Control Constraints: Theory and a DAE Framework
,”
Multibody Syst. Dyn.
1384-5640,
11
, pp.
343
364
.
8.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
, 2007, “
Control of Underactuated Mechanical Systems With Servo-Constraints
,”
Nonlinear Dyn.
0924-090X,
50
(
4
), pp.
781
791
.
9.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
, 2008, “
Modeling of Underactuated Mechanical Systems in Partly Specified Motion
,”
Journal of Theoretical and Applied Mechanics
,
46
(
2
), pp.
383
394
.
10.
Lam
,
S.
, 1998, “
On Lagrangian Dynamics and Its Control Formulations
,”
Appl. Math. Comput.
0096-3003,
91
, pp.
259
284
.
11.
Rosen
,
A.
, 1999, “
Applying the Lagrange Method to Solve Problems of Control Constraints
,”
ASME J. Appl. Mech.
0021-8936,
66
, pp.
1013
1015
.
12.
Gear
,
C.
, and
Petzold
,
L.
, 1984, “
ODE Methods for the Solution of Differential/Algebraic Systems
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
0036-1429,
21
(
4
), pp.
716
728
.
13.
Lötstedt
,
P.
, and
Petzold
,
L.
, 1986, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints I: Convergence Results for Backward Differentiation Formulas
,”
Math. Comput.
0025-5718,
46
(
174
), pp.
491
516
.
14.
Lötstedt
,
P.
, and
Petzold
,
L.
, 1986, “
Numerical Solution of Nonlinear Differential Equations With Algebraic Constraints II: Practical Implications
,”
Math. Comput.
0025-5718,
7
(
3
), pp.
720
733
.
15.
Brenan
,
K. E.
,
Campbell
,
S. L. V.
, and
Petzold
,
L. R.
, 1989,
Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
,
North-Holland
,
New York
.
16.
Isidori
,
A.
, 1995,
Nonlinear Control Systems
,
Springer-Verlag
,
New York
.
17.
Blajer
,
W.
, 2001, “
A Geometrical Interpretation and Uniform Matrix Formulation of Multibody System Dynamics
,”
J. Appl. Math. Mech.
0021-8928,
81
(
4
), pp.
247
259
.
18.
Masarati
,
P.
,
Lanz
,
M.
, and
Mantegazza
,
P.
, 2001, “
Multistep Integration of Ordinary, Stiff and Differential-Algebraic Problems for Multibody Dynamics Applications
,”
XVI Congresso Nazionale AIDAA
, Palermo, pp.
71.1
71.10
.
19.
Mantegazza
,
P.
,
Masarati
,
P.
,
Morandini
,
M.
, and
Quaranta
,
G.
, 2007, “
Computational and Design Aspects in Multibody Software Development
,”
Multibody Dynamics
, Vol.
4
,
J. C.
Garcia Orden
,
J. M.
Goicolea
, and
J.
Cuadrado
, eds.,
Springer
,
New York
, pp.
137
158
.
20.
Betsch
,
P.
,
Uhlar
,
S.
, and
Quasem
,
M.
, 2007, “
On the Incorporation of Servo Constraints Into a Rotationless Formulation of Flexible Multibody Dynamics
,”
Proceedings of the Multibody Dynamics 2007, ECCOMAS Thematic Conference
, Milan, Italy, pp.
1
15
.
You do not currently have access to this content.