The paper mainly focuses on a novel hyperchaotic system. The local stability of equilibrium is analyzed and existence of Hopf bifurcation is established. Moreover, formulas for determining the stability and direction of bifurcating periodic solutions are derived by center manifold theorem and normal form theory. Finally, numerical simulation is given to illustrate the theoretical analysis.
Issue Section:
Technical Briefs
References
1.
Chen
, G.
, and Ueta
, T.
, 1999
, “Yet Another Chaotic Attractor
,” Int. J. Bifur. Chaos
, 9
, pp. 1465
–1466
.10.1142/S02181274990010242.
Lü
, J.
, and Chen
, G.
, 2002
, “A New Chaotic Attractor Coined.
” Int. J. Bifur. Chaos
, 12
, pp. 659
–661
.10.1142/S02181274020046203.
Liu
, C.
, Liu
, T.
, Liu
, L.
, and Liu
, K.
, 2004
, “A New Chaotic Attractor
,” Chaos Solitons Fractals
, 22
, pp. 1031
–1038
.10.1016/j.chaos.2004.02.0604.
Qi
, G.
, Chen
, G.
, Du
, S.
, Chen
, Z.
, and Yuan
, Z.
, 2005
, “Analysis of a New Chaotic System
,” Physica A
, 352
, pp. 295
–308
.10.1016/j.physa.2004.12.0405.
Tigan
, G.
, 2008
, “Analysis of a 3D Chaotic System
,” Chaos Solitons Fractals
, 36
, pp. 1315
–1319
.10.1016/j.chaos.2006.07.0526.
Zhu
, C.
, 2012
, “A Novel Image Encryption Scheme Based on Improved Hyperchaotic Sequences
,” Opt. Commun.
, 285
, pp. 29
–37
.10.1016/j.optcom.2011.08.0797.
Smaoui
, N.
, Karouma
, A.
, and Zribi
, M.
, 2011
, “Secure Communications Based on the Synchronization of the Hyperchaotic Chen and the Unified Chaotic Systems
,” Commun. Nonlinear Sci. Numer. Simulat.
, 16
, pp. 3279
–3293
.10.1016/j.cnsns.2010.10.0238.
Liu
, M.
, Peng
, J.
, and Tse
, C. K.
, 2010
, “A New Hyperchaotic System and Its Circuit Implementation
,” Int. J. Bifur. Chaos
, 20
, pp. 1201
–1208
.10.1142/S021812741002640X9.
Wang
, X.
, and Wang
, M.
, 2008
, “A Hyperchaos Generated From Lorenz System
,” Physica A
, 387
, pp. 3751
–3758
.10.1016/j.physa.2008.02.02010.
Niu
, Y.
, Wang
, X.
, Wang
, M.
, and Zhang
, H.
, 2010
, “A New Hyperchaotic System and Its Circuit Impliementation
,” Commun. Nonlinear Sci. Numer. Simulat.
, 15
, pp. 3518
–3524
.10.1016/j.cnsns.2009.08.01411.
Liu
, M.
, and Feng
, J.
, 2009
, “A New Hyperchaotic System
,” Acta Phys. Sin.
, 58
, pp. 4457
–4462
(in Chinese)
.12.
Wu
, Y.
, Zhou
, X.
, Chen
, J.
, and Hui
, B.
, 2009
, “Chaos Synchronization of a New 3D Chaotic System
,” Chaos Solitons Fractals
, 42
, pp. 1812
–1819
.10.1016/j.chaos.2009.03.09213.
Tao
, C.
, Yang
, C.
, Luo
, Y.
, Xiang
, H.
, and Hu
, F.
, 2005
, “Speed Feedback Control of Chaotic System
,” Chaos Solitons Fractals
, 23
, pp. 259
–263
.10.1016/j.chaos.2004.04.00914.
Yu
, W.
, 2010
, “Stabilization of Three-Dimensional Chaotic Systems Via Single State Feedback Controller
,” Phys. Lett. A
, 374
, pp. 1488
–1492
.10.1016/j.physleta.2010.01.04815.
Yan
, Z.
, 2005
, “Controlling Hyperchaos in the New Hyperchaotic Chen System
,” Appl. Math. Comput.
, 168
, pp. 1239
–1250
.10.1016/j.amc.2004.10.01616.
Tao
, C.
, and Liu
, X.
, 2007
, “Feedback and Adaptive Control and Synchronization of a Set of Chaotic and Hyperchaotic Systems
,” Chaos Solitons Fractals
, 32
, pp. 1572
–1581
.10.1016/j.chaos.2005.12.00517.
Laoye
, J. A.
, Vincent
, U. E.
, and Kareem
, S. O.
, 2009
, “Chaos Control of 4D Chaotic Systems Using Recursive Backstepping Nonlinear Controller
,” Chaos Solitons Fractals
, 39
, pp. 356
–362
.10.1016/j.chaos.2007.04.02018.
Wei
, Z.
, and Yang
, Q.
, 2010
, “Anti-Control of Hopf Bifurcation in the New Chaotic System With Two Stable Node-Foci
,” Appl. Math. Comput.
, 217
, pp. 422
–429
.10.1016/j.amc.2010.05.03519.
Mello
, L. F.
, Messias
, M.
, and Braga
, D. C.
, 2008
, “Bifurcation Analysis of a New Lorenz-Like Chaotic System
,” Chaos Solitons Fractals
, 37
, pp. 1244
–1255
.10.1016/j.chaos.2007.11.00820.
Mittal
, A. K.
, Mukherjee
, S.
, and Shukla
, R. P.
, 2011
, “Bifurcation Analysis of Some Forced Lü Systems
,” Commun. Nonlinear Sci. Numer. Simulat.
, 16
, pp. 787
–797
.10.1016/j.cnsns.2010.04.01621.
Zhuang
, K.
, 2010
, “Hopf Bifurcation for a New Chaotic System
,” Int. J. Comput. Math. Sci.
, 4
, pp. 354
–357
.22.
Zhang
, K.
, and Yang
, Q.
, 2010
, “Hopf Bifurcation Analysis in a 4D-Hyperchaotic System
,” J. Syst. Sci. Complex
, 23
, pp. 748
–758
.10.1007/s11424-010-8084-y23.
Yang
, Q.
, and Chen
, G.
, 2008
, “A Chaotic System With One Saddle and Two Stable Node-Foci
,” Int. J. Bifur. Chaos
, 18
, pp. 1393
–1414
.10.1142/S021812740802106324.
Hassard
, B. D.
, Kazarinoff
, N. D.
, and Wan
, Y. H.
, 1981
, Theory and Applications of Hopf Bifurcation
, 1st ed., Cambridge University Press
, Cambridge
.Copyright © 2013 by ASME
You do not currently have access to this content.