Skip Nav Destination
Issues
September 2016
ISSN 1555-1415
EISSN 1555-1423
In this Issue
Research Papers
An Efficient Dynamic Formulation for Solving Rigid and Flexible Multibody Systems Based on Semirecursive Method and Implicit Integration
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051001.
doi: https://doi.org/10.1115/1.4032246
Topics:
Equations of motion
,
Multibody systems
,
Simulation
,
Errors
Analytical and Numerical Validation of a Moving Modes Method for Traveling Interaction on Long Structures
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051002.
doi: https://doi.org/10.1115/1.4032247
Topics:
Deformation
,
Dynamics (Mechanics)
,
Equations of motion
,
Pavement live loads
,
Simulation
,
Stress
,
Vehicles
,
Kinematics
,
Railroads
,
Stiffness
Riccati-Based Discretization for Nonlinear Continuous-Time Systems
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051003.
doi: https://doi.org/10.1115/1.4032382
Three-Dimensional Viscoelastic Simulation for Injection/Compression Molding Based on Arbitrary Lagrangian Eulerian Description
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051004.
doi: https://doi.org/10.1115/1.4032384
Topics:
Flow (Dynamics)
,
Pressure
,
Simulation
,
Stress
,
Temperature
,
Compression
,
Compression molding
,
Gravity (Force)
,
Constitutive equations
Effect of Flat Belt Thickness on Steady-State Belt Stresses and Slip
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051005.
doi: https://doi.org/10.1115/1.4032383
Topics:
Belts
,
Friction
,
Pulleys
,
Rubber
,
Stress
,
Trusses (Building)
,
Steady state
Dynamical Behavior of a Capacitive Microelectromechanical System Powered by a Hindmarsh–Rose Electronic Oscillator
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051006.
doi: https://doi.org/10.1115/1.4032276
Topics:
Damping
,
Microelectromechanical systems
,
Oscillations
,
Dynamics (Mechanics)
,
Signals
Lyapunov Stability of Commensurate Fractional Order Systems: A Physical Interpretation
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051007.
doi: https://doi.org/10.1115/1.4032387
Topics:
Energy budget (Physics)
,
Stability
,
Circuits
Estimation of the Bistable Zone for Machining Operations for the Case of a Distributed Cutting-Force Model
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051008.
doi: https://doi.org/10.1115/1.4032443
Topics:
Bifurcation
,
Cutting
,
Stability
,
Machining
,
Manifolds
Rational ANCF Thin Plate Finite Element
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051009.
doi: https://doi.org/10.1115/1.4032385
Topics:
Finite element analysis
,
Geometry
,
Shapes
,
Tires
,
Algebra
,
Polynomials
The Numerical Solution of the Bagley–Torvik Equation With Fractional Taylor Method
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051010.
doi: https://doi.org/10.1115/1.4032390
Topics:
Algebra
,
Approximation
,
Boundary-value problems
,
Errors
,
Numerical analysis
,
Algorithms
,
Function approximation
The Control and Synchronization of a Class of Chaotic Systems With Output Variable and External Disturbance
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051011.
doi: https://doi.org/10.1115/1.4032444
Topics:
Synchronization
,
Chaos
Asymptotic Stability and Chaotic Motions in Trajectory Following Feedback Controlled Robots
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051012.
doi: https://doi.org/10.1115/1.4032389
Topics:
Robots
,
Stability
,
Control equipment
,
Trajectories (Physics)
,
Feedback
,
Chaos
,
Flow (Dynamics)
A New Bernoulli Wavelet Operational Matrix of Derivative Method for the Solution of Nonlinear Singular Lane–Emden Type Equations Arising in Astrophysics
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051013.
doi: https://doi.org/10.1115/1.4032386
Topics:
Astrophysics
,
Errors
,
Wavelets
,
Boundary-value problems
Nonlinear Bending Analysis of First-Order Shear Deformable Microscale Plates Using a Strain Gradient Quadrilateral Element
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051014.
doi: https://doi.org/10.1115/1.4032552
Topics:
Elasticity
,
Microplates
,
Strain gradient
,
Displacement
,
Shear (Mechanics)
,
Stress
,
Boundary-value problems
,
Deflection
A Numerical Method for Solving Fractional Optimal Control Problems Using Ritz Method
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051015.
doi: https://doi.org/10.1115/1.4032694
Dynamic Behavior of Flexible Multiple Links Captured Inside a Closed Space
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051016.
doi: https://doi.org/10.1115/1.4032388
Topics:
Chain
,
Dynamics (Mechanics)
,
Equations of motion
,
Flight
,
Inertia (Mechanics)
,
Kinematics
,
Manipulators
,
Open kinematic chains
,
Simulation
,
Algebra
Optimal Torque Distribution for the Stability Improvement of a Four-Wheel Distributed-Driven Electric Vehicle Using Coordinated Control
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051017.
doi: https://doi.org/10.1115/1.4033004
Topics:
Stability
,
Tires
,
Torque
,
Vehicles
,
Wheels
,
Yaw
,
Control systems
,
Control equipment
,
Electric vehicles
,
Failure
Subharmonic Resonance of Duffing Oscillator With Fractional-Order Derivative
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051018.
doi: https://doi.org/10.1115/1.4032854
Topics:
Resonance
,
Stability
,
Steady state
Robust Exponential Stability of Large-Scale System With Mixed Input Delays and Impulsive Effect
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051019.
doi: https://doi.org/10.1115/1.4033253
Topics:
Delays
,
Stability
,
Closed loop systems
,
Nonlinear systems
On the Nonlinear Kinematic Oscillations of Railway Wheelsets
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051020.
doi: https://doi.org/10.1115/1.4033034
Topics:
Kinematics
,
Oscillations
,
Rails
,
Wheelsets
,
Wheels
,
Approximation
,
Railroads
A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051021.
doi: https://doi.org/10.1115/1.4033384
Lyapunov–Schmidt Reduction for Fractional Differential Systems
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051022.
doi: https://doi.org/10.1115/1.4033607
Topics:
Algorithms
,
Bifurcation
,
Dynamics (Mechanics)
,
Space
,
Theorems (Mathematics)
,
Phase diagrams
Informative Data for Model Calibration of Locally Nonlinear Structures Based on Multiharmonic Frequency Responses
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051023.
doi: https://doi.org/10.1115/1.4033608
Topics:
Calibration
,
Excitation
,
Nonlinear systems
,
Frequency response
,
Stress
Tracking Accuracy Analysis of a Planar Flexible Manipulator With Lubricated Joint and Interval Uncertainty
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051024.
doi: https://doi.org/10.1115/1.4033609
Chaotic and Hyperchaotic Dynamics of Smart Valves System Subject to a Sudden Contraction
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051025.
doi: https://doi.org/10.1115/1.4033610
Topics:
Dynamics (Mechanics)
,
Valves
,
Flow (Dynamics)
,
Dynamic analysis
,
Actuators
,
Poincaré maps
,
Stability
Improved Perturbative Solution of Yaroshevskii's Planetary Entry Equation
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051026.
doi: https://doi.org/10.1115/1.4033553
Topics:
Errors
,
Flight
,
Space vehicles
,
Heating
,
Equations of motion
Primary Resonance of Dry-Friction Oscillator With Fractional-Order Proportional-Integral-Derivative Controller of Velocity Feedback
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051027.
doi: https://doi.org/10.1115/1.4033443
Topics:
Control equipment
,
Damping
,
Dry friction
,
Feedback
,
Resonance
,
Stability
,
Steady state
,
Friction
Finite-Time Synchronization for High-Dimensional Chaotic Systems and Its Application to Secure Communication
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051028.
doi: https://doi.org/10.1115/1.4033686
Topics:
Signals
,
Stability
,
Synchronization
,
Chaos
,
Errors
,
Simulation results
On the Global Analysis of a Piecewise Linear System that is excited by a Gaussian White Noise
J. Comput. Nonlinear Dynam. September 2016, 11(5): 051029.
doi: https://doi.org/10.1115/1.4033687
Topics:
Attractors
,
Chaos
,
Dynamic systems
,
Excitation
,
Linear systems
,
Noise (Sound)
,
Nonlinear dynamical systems
,
White noise
,
Phase diagrams
Technical Brief
A Terminal Sliding Mode Control of Disturbed Nonlinear Second-Order Dynamical Systems
J. Comput. Nonlinear Dynam. September 2016, 11(5): 054501.
doi: https://doi.org/10.1115/1.4032503
A Continuous Velocity-Based Friction Model for Dynamics and Control With Physically Meaningful Parameters
J. Comput. Nonlinear Dynam. September 2016, 11(5): 054502.
doi: https://doi.org/10.1115/1.4033658
Topics:
Friction
,
Simulation
Elliptic Motions and Control of Rotors Suspending in Active Magnetic Bearings
J. Comput. Nonlinear Dynam. September 2016, 11(5): 054503.
doi: https://doi.org/10.1115/1.4033659
Topics:
Control equipment
,
Magnetic bearings
,
Rotors
,
Vibration suppression
,
Damping
Email alerts
RSS Feeds
Numerical Simulation Method for the Rain-Wind Induced Vibration of the Three-Dimensional Flexible Stay Cable
J. Comput. Nonlinear Dynam
A Numerical Study for Nonlinear Time-Space Fractional Reaction-Diffusion Model of Fourth-Order
J. Comput. Nonlinear Dynam (March 2025)
An Investigation of Dynamic Behavior of Electric Vehicle Gear Trains
J. Comput. Nonlinear Dynam (March 2025)
Nonlinear Dynamic Analysis Framework for Slender Structures Using the Modal Rotation Method
J. Comput. Nonlinear Dynam (March 2025)