For the first time, Tolerance-Maps (T-Maps) are constructed to model composite positional tolerancing applied to patterns (arrays) of features. The T-Map for a feature is a range (codomain) of points obtained by mapping all the variational possibilities (domain) of a feature within its tolerance zone to a hypothetical Euclidean point space. T-Maps have already been developed for tolerances applied to single features, such as to a simple axis (line), a plane, and a cylinder, but not for the special methods available for tolerancing patterns of features. In this paper, the different pattern tolerancing methods listed in the standards produce distinctions in geometric shape, proportions, and/or dimensions of a T-Map. The T-Map geometry is different when tolerances are specified with composite position tolerancing rather than with two-single-segment control frames. Additional changes to geometry occur when material modifiers are also specified. Two levels of T-Maps are proposed for a pattern of features. One is at the assembly level to ensure the assembly of an engaging pattern of pins and holes, such as the array of pins on an integrated circuit, which are to be inserted into a base. The second is at the part level to model the variations between the two parts that contain the engaging patterns. The assembly-level T-Maps apply to any number of engaging pin/hole features arranged in any pattern: linear, circular, rectangular, or irregular. In this paper, the part-level T-Map is restricted to linear patterns. The different specifications are also compared with a statistical analysis of misalignment for an assembly with a pattern of pins and holes.

References

1.
ASME
,
2009
, “Dimensioning and Tolerancing,”
American Society of Mechanical Engineers
,
New York
, Standard No. ASME Y14.5.
2.
ISO
,
2017
, “
Geometrical Product Specifications (GPS)—Geometrical Tolerancing—Tolerances of Form, Orientation, Location and Run-Out
,” International Organization for Standardization, Geneva, Switzerland, Standard No.
ISO 1101:2017
.https://www.iso.org/standard/66777.html
3.
Giordano
,
M.
,
Pairel
,
E.
, and
Samper
,
S.
,
1999
, “
Mathematical Representation of Tolerance Zones
,” Sixth CIRP International Seminar on CAT,
Enschede
,
The Netherlands
, Mar. 22–24, pp.
177
186
.
4.
Chase
,
K. W.
,
Gao
,
J.
,
Magleby
,
S. P.
, and
Sorenson
,
C. D.
,
1996
, “
Including Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies
,”
IIE Trans.
,
28
(
10
), pp.
795
808
.
5.
Clément
,
A.
,
Rivière
,
A.
,
Serré
,
P.
, and
Valade
,
C.
,
1997
, “
The TTRS: 13 Constraints for Dimensioning and Tolerancing
,”
Geometric Design Tolerancing: Theories, Standards and Applications
,
H. A.
ElMaraghy
, ed.,
Springer
,
Boston, MA
, pp.
28
29
.
6.
Zou
,
Z.
, and
Morse
,
E. P.
,
2003
, “
Applications of the GapSpace Model for Multidimensional Mechanical Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
22
30
.
7.
Whitney
,
D. E.
,
Gilbert
,
O. L.
, and
Jastrzebski
,
M.
,
1994
, “
Representation of Geometric Variations Using Matrix Transforms for Statistical Tolerance Analysis in Assemblies
,”
Res. Eng. Des.
,
6
(
4
), pp.
191
210
.
8.
Pasupathy
,
T. M.
,
Morse
,
E. P.
, and
Wilhelm
,
R. G.
,
2003
, “
A Survey of Mathematical Methods for the Construction of Geometric Tolerance Zones
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
1
), pp.
64
75
.
9.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
10.
Shah
,
J. J.
,
Ameta
,
G.
,
Shen
,
Z.
, and
Davidson
,
J.
,
2007
, “
Navigating the Tolerance Analysis Maze
,”
Comput.-Aided Des. Appl.
,
4
(
5
), pp. 705–718.
11.
Ameta
,
G.
,
Samper
,
S.
, and
Giordano
,
M.
,
2011
, “
Comparison of Spatial Math Models for Tolerance Analysis: Tolerance-Maps, Deviation Domain, and TTRS
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p. 021004.
12.
Polini
,
W.
,
2012
, “
Taxonomy of Models for Tolerance Analysis in Assembling
,”
Int. J. Prod. Res.
,
50
(
7
), pp.
2014
2029
.
13.
Mansuy
,
M.
,
Giordano
,
M.
, and
Davidson
,
J. K.
,
2013
, “
Comparison of Two Similar Mathematical Models for Tolerance Analysis: T-Map and Deviation Domain
,”
ASME J. Mech. Des.
,
135
(
10
), p.
101008
.
14.
Marziale
,
M.
, and
Polini
,
W.
,
2011
, “
Review of Variational Models for Tolerance Analysis of an Assembly
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
225
(
3
), pp.
305
318
.
15.
Marziale
,
M.
, and
Polini
,
W.
,
2011
, “
A Review of Two Models for Tolerance Analysis of an Assembly: Jacobian and Torsor
,”
Int. J. Comput. Integr. Manuf.
,
24
(
1
), pp.
74
86
.
16.
Marziale
,
M.
, and
Polini
,
W.
,
2009
, “
A Review of Two Models for Tolerance Analysis of an Assembly: Vector Loop and Matrix
,”
Int. J. Adv. Manuf. Technol.
,
43
(
11
), pp.
1106
1123
.
17.
Chase
,
K. W.
, and
Parkinson
,
A. R.
,
1991
, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
(
1
), pp.
23
37
.
18.
Nigam
,
S. D.
, and
Turner
,
J. U.
,
1995
, “
Review of Statistical Approaches to Tolerance Analysis* 1
,”
Comput.-Aided Des.
,
27
(
1
), pp.
6
15
.
19.
Hong
,
Y. S.
, and
Chang
,
T. C.
,
2002
, “
A Comprehensive Review of Tolerancing Research
,”
Int. J. Prod. Res.
,
40
(
11
), pp.
2425
2459
.
20.
Davidson
,
J. K.
,
Mujezinovič
,
A.
, and
Shah
,
J. J.
,
2002
, “
A New Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
ASME J. Mech. Des.
,
124
(
(4
), pp.
609
622
.
21.
Mujezinović
,
A.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2004
, “
A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
504
518
.
22.
Bhide
,
S.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Tolerance-Maps Applied to the Straightness and Orientation of an Axis
,”
In Models for Computer Aided Tolerancing in Design and Manufacturing
,
J. K.
Davidson
, ed.,
Springer
,
Dordrecht, The Netherlands
, pp.
45
54
.
23.
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2002
, “
Geometric Tolerances: A New Application for Line Geometry and Screws
,”
Proc. Inst. Mech. Eng., Part C
,
216
(
1
), pp.
95
103
.
24.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Using Tolerance-Maps to Generate Frequency Distributions of Clearance and Allocate Tolerances for Pin-Hole Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
7
(4), pp.
347
359
..
25.
Bhide
,
S.
,
2002
, “A New Mathematical Model for Geometric Tolerances Applied to Cylindrical Features,” M.S. thesis, Arizona State University, Tempe, AZ.
26.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2010
, “
Statistical Tolerance Allocation for Tab-Slot Assemblies Utilizing Tolerance-Maps
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(1), p. 011005.
27.
Singh
,
G.
,
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2013
, “
Tolerance Analysis and Allocation for Design of a Self-Aligning Coupling Assembly Using Tolerance-Maps
,”
ASME Mech. Des.
,
135
(
3
), p. 031005.
28.
Ameta
,
G.
,
2004
, “Tolerance-Maps Applied to Angled Faces and Two Clusters of Features,” M.S. thesis, Arizona State University, Tempe, AZ.
29.
Ameta
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2007
, “
Tolerance-Maps Applied to a Point-Line Cluster of Features
,”
ASME J. Mech. Des.
,
129
(8), pp.
782
792
.
30.
Clasen
,
P. J.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2009
, “
Modeling of Geometric Variations Within a Tolerance-Zone for Circular Runout
,”
ASME
Paper No. DETC2009-86283.
31.
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2012
, “
Modeling of Geometric Variations for Line-Profiles
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041004
.
32.
He
,
Y.
,
Kalish
,
N.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2016
, “
Tolerance-Maps for Line-Profiles Formed by Intersecting Kinematically Transformed Primitive T-Map Elements
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
2
), p. 021005.
33.
Ameta
,
G.
,
2006
, “Statistical Tolerance Analysis and Allocation for Assemblies Using Tolerance-Maps,” Ph.D. thesis, Arizona State University, Tempe, AZ.
34.
Jiang
,
K.
,
Davidson
,
J. K.
,
Liu
,
J.
, and
Shah
,
J. J.
,
2014
, “
Using Tolerance Maps to Validate Machining Tolerances for Transfer of Cylindrical Datum in Manufacturing Process
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
465
478
.
35.
Mohan, P., Haghighi, P., Shah, J. J., and Davidson, J. K., 2015, “
Development of a Library of Feature Fitting Algorithms for CMMs
,”
Int. J. Precis. Eng. Manuf.
,
16
(10), pp. 2101–2113.
36.
Gunasena
,
N. U.
,
Lehtihet
,
E.-A.
, and
HAM
,
I.
,
1991
, “
The Verification of Composite Position Tolerance
,”
IIE Trans.
,
23
(
3
), pp.
290
299
.
37.
Ranade
,
S.
,
Lehtihet
,
E. A.
, and
Cavalier
,
T. M.
,
2000
, “
Comparative Evaluation of Composite Position Tolerance Specifications for Patterns of Holes
,”
33rd International MATADOR Conference
, Manchester, UK, July, pp.
533
538
.
38.
Xi
,
M.
,
Lehtihet
,
E. A.
, and
Cavalier
,
T. M.
,
2004
, “
Numerical Approximation Approach to the Producibility of Composite Position Tolerance Specifications for Pattern of Holes
,”
Int. J. Prod. Res.
,
42
(
2
), pp.
243
266
.
39.
Jiang
,
Y.
,
2016
, “Evaluation on the Accuracy of Multiple Machines Using Composite Position Tolerances,”
M.S. thesis
, Pennsylvania State University, State College, PA.https://etda.libraries.psu.edu/catalog/9c67wm80s
40.
He
,
G.
,
Guo
,
L.
,
Zhang
,
M.
, and
Liu
,
P.
,
2016
, “
Evaluation of Composite Positional Error Based on Superposition and Containment Model and Geometrical Approximation Algorithm
,”
Measurement
,
94
, pp.
441
450
.
41.
Saravanan
,
A.
,
Balamurugan
,
C.
,
Sivakumar
,
K.
, and
Ramabalan
,
S.
,
2014
, “
Optimal Geometric Tolerance Design Framework for Rigid Parts With Assembly Function Requirements Using Evolutionary Algorithms
,”
Int. J. Adv. Manuf. Technol.
,
73
(
9–12
), pp.
1219
1236
.
42.
Ameta
,
G.
,
Singh
,
G.
,
Davidson
,
J. K.
, and
Shah
,
J. J.
,
2017
, “
Application of T-Maps for Composite Position Tolerance for Patterns of Features
,”
ASME
Paper No. DETC2017-68391.
43.
Coxeter
,
H. S. M.
,
1961
,
Introduction to Geometry
, Wiley,
New York
.
44.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J.
,
2007
, “
Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases
,”
Ninth CIRP International Seminar on CAT
, Tempe, AZ, Apr. 10–12, pp.
85
94
.
You do not currently have access to this content.