Advanced driver assistance systems (ADASs) allow information provision through visual, auditory, and haptic signals to achieve multidimensional goals of mobility. However, processing information from ADAS requires operating expenses of mental workload that drivers incur from their limited attentional resources. The change in driving condition can modulate drivers' workload and potentially impair drivers' interaction with ADAS. This paper shows how the measure of cardiac activity (heart rate and the indexes of autonomic nervous system (ANS)) could discriminate the influence of different driving conditions on drivers' workload associated with attentional resources engaged while driving with ADAS. Fourteen drivers performed a car-following task with visual ADAS in a simulated driving. Drivers' workload was manipulated in two driving conditions: one in monotonous condition (constant speed) and another in more active condition (variable speed). Results showed that drivers' workload was similarly affected, but the amount of attentional resources allocation was slightly distinct between both conditions. The analysis of main effect of time demonstrated that drivers' workload increased over time without the alterations in autonomic indexes regardless of driving condition. However, the main effect of driving condition produced a higher level of sympathetic activation on variable speed driving compared to driving with constant speed. Variable speed driving requires more adjustment of steering wheel movement (SWM) to maintain lane-keeping performance, which led to higher level of task involvement and increased task engagement. The proposed measures appear promising to help designing new adaptive working modalities for ADAS on the account of variation in driving condition.

References

1.
Koziol
,
J. S.
,
Inman
,
V. W.
,
Carter
,
M.
,
Hitz
,
J. S.
,
Najm
,
W.
,
Chen
,
S.
,
Lam
,
A.
,
Penic
,
M.
,
Jensen
,
M.
,
Baker
,
M. J.
, and
Robinson
,
M.
,
1999
, “Evaluation of the Intelligent Cruise Control System—Volume I: Study Results,” U. S. Department of Transportation Research and Special Programs Administration John A Vollpe National Transportation Systems Center, Cambridge, MA, Report No. DOT-VNTSC-NHTSA-98-3.
2.
Alkim
,
T. P.
,
Bootsma
,
G.
, and
Hoogendoorn
,
S. P.
,
2007
, “
Field Operational Test ‘the Assisted Driver’
,”
IEEE Intelligent Vehicles Symposium
, Istanbul, Turkey, June 13–15, pp.
1198
1203
.
3.
Carsten
,
O. M. J.
, and
Nilsson
,
L.
,
2001
, “
Safety Assessment of Driver Assistance Systems
,”
EJTIR
,
1
(
3
), pp.
225
243
.http://eprints.whiterose.ac.uk/2007/
4.
Young
,
M. S.
,
Birrell
,
S. A.
, and
Stanton
,
N. A.
,
2011
, “
Safe Driving in a Green World: A Review of Driver Performance Benchmarks and Technologies to Support ‘Smart’ Driving
,”
Appl. Ergon.
,
42
(
4
), pp.
533
539
.
5.
Birrell
,
S. A.
, and
Young
,
M. S.
,
2011
, “
The Impact of Smart Driving Aids on Driving Performance and Driver Distraction
,”
Transp. Res. Part F: Psychol. Behav.
,
14
(
6
), pp.
484
493
.
6.
Azzi
,
S.
,
Reymond
,
G.
,
Mèrienne
,
F.
, and
Kemeny
,
A.
,
2017
, “
Eco-Driving Performance Assessment With In-Car Visual and Haptic Feedback Assistance
,”
ASME J. Comput. Sci. Eng.
,
11
(4), p. 041005.
7.
Abbink
,
D. A.
,
Boer
,
E. R.
, and
Mulder
,
M.
,
2008
, “
Motivation for Continuous Haptic Gas Pedal Feedback to Support Car Following
,”
IEEE Intelligent Vehicles Symposium
, Eindhoven, The Netherlands, June 4–6, pp.
283
–2
90
.
8.
Liu
,
B. S.
, and
Lee
,
Y. H.
,
2006
, “
In-Vehicle Workload Assessment: Effects of Traffic Situations and Cellular Telephone Use
,”
J. Saf. Res.
,
37
(
1
), pp.
99
105
.
9.
Hajek
,
W.
,
Gaponova
,
I.
,
Fleischer
,
K. H.
, and
Krems
,
J.
,
2013
, “
Workload-Adaptive Cruise Control—A New Generation of Advanced Driver Assistance Systems
,”
Transp. Res. Part F: Psychol. Behav.
,
20
, pp.
108
120
.
10.
Engström
,
J.
,
Johansson
,
E.
, and
Östlund
,
J.
,
2005
, “
Effects of Visual and Cognitive Load in Real and Simulated Motorway Driving
,”
Transp. Res. Part F: Traffic Psychol. Behav.
,
8
(
2
), pp.
97
120
.
11.
Reyes
,
M. L.
, and
Lee
,
J. D.
,
2008
, “
Effects of Cognitive Load Presence and Duration on Driver Eye Movements and Event Detection Performance
,”
Transp. Res. Part F: Psychol. Behav.
,
11
(
6
), pp.
391
402
.
12.
Dingus
,
T. A.
,
Klauer
,
S. G.
,
Neale
,
V. L.
,
Petersen
,
A.
,
Lee
,
S. E.
, and
Sudweeks
,
J.
,
2006
, “The 100-Car Naturalistic Driving Study—Phase II: Results of the 100-Car Field Experiment,” National Highway Traffic Safety Administration, Washington, DC, Paper No.
DOT HS 810-593
.https://trid.trb.org/view.aspx?id=783477
13.
Morris
,
A.
,
Reed
,
S.
,
Ruth
,
W.
,
Brown
,
L.
, and
Birrell
,
S. A.
,
2013
, “
Studying the Effects of In-Vehicle Information Systems on Driver Visual Behavior—Implications for Design
,”
International Research Council on Biomechanics of Injury
(
IRCOBI
2013), Gothenburg, Sweden, Sept. 11–13, pp. 641–651.http://wrap.warwick.ac.uk/57355/
14.
Zhou
,
F.
,
Ji
,
Y.
, and
Jiao
,
R. J.
,
2017
, “
Augmented Affective-Cognition for Usability Study of In-Vehicle System User Interface
,”
ASME J. Comput. Sci. Eng.
,
14
(2), p. 021001.
15.
Waard
,
D. D.
,
1996
, “The Measurement of Drivers' Mental Workload,”
Ph.D. thesis
, The Traffic Research Centre VSC, University of Groningen, Groningen, The Netherlands.http://apps.usd.edu/coglab/schieber/pdf/deWaard-Thesis.pdf
16.
Michon
,
J. A.
,
1985
, “
A Critical View of Driver Behavior Models: What Do We Know, What Should We Do?
,”
Human Behavior and Traffic Safety
, L. Evans and R. C. Schwing, eds., Plenum Press, New York, pp.
485
520
.
17.
Rasmussen
,
J.
,
1983
, “
Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other Distinctions in Human Performance Models
,”
IEEE Trans. Syst., Man Cybern.
,
SMC-13
(
3
), pp.
257
266
.
18.
Hale
,
A. R.
,
Stoop
,
J.
, and
Hommels
,
J.
,
1990
, “
Human Error Models as Predictors of Accident Scenarios for Designers in Road Transport Systems
,”
Ergonomics
,
33
(
10–11
), pp.
1377
1387
.
19.
Engström
,
J.
, and
Hollnagel
,
E.
,
2007
, “
A General Conceptual Framework for Modelling Behavioural Effects of Driver Support Functions
,”
Modelling Driver Behaviour in Automotive Environments
,
P. C.
Cacciabue
, ed.,
Springer
,
London
.
20.
Mulder
,
G.
,
1986
, “
The Concept and Measurement of Mental Effort
,”
Energetics and Human Information Processing
,
G. R. J.
Hockey
,
A. W. J.
Gaillard
, and
M. G. H.
Coles
, eds., Martinus Nijhoff Publishers, Dordrecht, The Netherlands, pp.
175
198
.
21.
Thiffault
,
P.
, and
Bergeron
,
J.
,
2003
, “
Monotony of Road Environment and Driver Fatigue: A Simulator Study
,”
Accid. Anal. Prev.
,
35
(
3
), pp.
381
391
.
22.
Larue
,
G. S.
,
Rakotonirainy
,
A.
, and
Pettitt
,
A. N.
,
2011
, “
Driving Performance Impairments Due to Hypovigilance on Monotonous Roads
,”
Accid. Anal. Prev.
,
43
(
6
), pp.
2037
2046
.
23.
Caruso
,
G.
,
Ruscio
,
D.
,
Ariansyah
,
D.
, and
Bordegoni
,
M.
,
2017
, “Driving Simulator System to Evaluate Drivers' Workload Using ADAS in Different Driving Contexts,”
ASME
Paper No. DETC2017-67850.
24.
Ho
,
C.
,
Reed
,
N.
, and
Spence
,
C.
,
2006
, “
Assessing the Effectiveness of ‘Intuitive’ Vibrotactile Warning Signals in Preventing Front-to-Rear-End Collisions in a Driving Simulator
,”
Accid. Anal. Prev.
,
38
(
5
), pp.
988
996
.
25.
Brookhuis
,
K. A.
, and
Waard
,
D. D.
,
2010
, “
Monitoring Drivers' Mental Workload in Driving Simulators Using Physiological Measures
,”
Accid. Anal. Prev.
,
42
(
3
), pp.
898
903
.
26.
Backs
,
R. W.
,
1995
, “
Going Beyond Heart Rate: Modes of Autonomic Control in the Cardiovascular Assessment of Mental Workload
,”
Int. J. Aviat. Psychol.
,
5
(
1
), pp.
25
48
.
27.
Berntson
,
G. G.
,
Cacioppo
,
J. T.
, and
Quigley
,
K. S.
,
1991
, “
Autonomic Determinism: The Modes of Autonomic Control, the Doctrine of Autonomic Space, and the Laws of Autonomic Constraint
,”
Psychol. Rev.
,
98
(
4
), pp.
459
487
.
28.
Backs
,
R. W.
,
Rohdy
,
J.
, and
Barnard
,
J.
,
2005
, “
Cardiac Control During Dual-Task Performance of Visual or Auditory Monitoring With Visual-Manual Tracking
,”
Psychologia: Int. J. Psychol. Orient
,
48
(
2
), pp.
66
83
.
29.
Lenneman
,
J. K.
, and
Backs
,
R. W.
,
2009
, “
Cardiac Autonomic Control During Simulated Driving With a Concurrent Verbal Working Memory Task
,”
Ergonomics
,
51
(
3
), pp.
404
418
.
30.
Backs
,
R. W.
,
2003
, “
Cardiac Measures of Driver Workload During Simulated Driving With and Without Visual Occlusion
,”
Hum. Factors
,
45
(
4
), pp.
525
538
.
31.
Ruscio
,
D.
,
Bos
,
A. J.
, and
Ciceri
,
M. R.
,
2017
, “
Distraction or Cognitive Overload? Using Modulations of the Autonomic Nervous System to Discriminate the Possible Negative Effects of Advanced Assistance System
,”
Accid. Anal. Prev.
,
103
, pp.
105
111
.
32.
Shelley
,
K. H.
,
2007
, “
Photoplethysmography Beyond the Calculation of Arterial Oxygen Saturation and Heart Rate
,”
Anesth. Analg.
,
105
(
6
), pp.
S31
S36
.
33.
Lin
,
I. M.
,
Fan
,
S. Y.
,
Lu
,
Y. H.
,
Lee
,
C. S.
,
Wu
,
K. T.
, and
Ji
,
H. J.
,
2015
, “
Exploring the Blood Volume Amplitude and Pulse Transit Time During Anger Recall in Patients With Coronary Artery Disease
,”
J. Cardiol.
,
65
(
1
), pp.
50
56
.
34.
Berntson
,
G. G.
,
Bigger
,
T.
,
Eckberg
,
D. L.
,
Grossman
,
P.
,
Kaufmann
,
P. G.
,
Malik
,
M.
,
Nagaraja
,
H. N.
, Porges, S. W., Saul, J. P., Stone, P. H., and Van Der Molen, M. W.,
1997
, “
Heart Rate Variability: Origins, Methods, and Interpretive Caveats
,”
Psychophysiology
,
34
(
6
), pp.
623
648
.
35.
Laborde
,
S.
,
Mosley
,
E.
, and
Thayer
,
J. F.
,
2017
, “
Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting
,”
Front. Psychol.
,
8
, pp.
1
18
.
36.
Kaufmann
,
T.
,
Sütterlin
,
S.
,
Schulz
,
S. M.
, and
Vögele
,
C.
,
2011
, “
ARTiiFACT: A Tool for Heart Rate Artifact Processing and Heart Rate Variability Analysis
,”
Behav. Res. Methods
,
43
(
4
), pp.
1161
1170
.
37.
Hart
,
S. G.
, and
Staveland
,
L. E.
,
1988
, “
Development of NASA-TLX (Task Load Index): Results of Empirical and Theoretical Research
,”
Adv. Psychol.
,
52
, pp.
139
183
.
38.
Ahsberg
,
E.
,
Gamberale
,
F.
, and
Kjellberg
,
A.
,
1997
, “
Perceived Quality of Fatigue During Different Occupational Tasks: Development of a Questionnaire
,”
Int. J. Ind. Ergonom.
,
20
(2), pp.
121
135
.
39.
Atkinson
,
G.
,
2001
, “
Analysis of Repeated Measurements in Physical Therapy Research
,”
Phys. Ther. Sport
,
2
(
4
), pp.
194
208
.
40.
Field
,
A.
,
2013
,
Discovering Statistics Using IBM SPSS Statistics
, 4th ed.,
Sage
, London.
41.
Ramírez
,
E.
,
Ortega
,
A. R.
, and
Reyes
,
G. A.
,
2015
, “
Anxiety, Attention, and Decision Making: The Moderating Role of Heart Rate Variability
,”
Int. J. Psychophysiol.
,
98
(
3
), pp.
490
496
.
42.
Maxwell
,
S. E.
, and
Delaney
,
H. D.
,
2004
,
Designing Experiments and Analyzing Data: A Model Comparison Perspective
, 2nd ed., Lawrence Erlbaum Associates, Mahwah, NJ.
43.
Grandjean
,
E.
,
1979
, “
Fatigue in Industry
,”
Occup. Environ. Med.
,
36
(
3
), pp.
175
186
.
44.
Tejero
,
P.
, and
Chóliz
,
M.
,
2002
, “
Driving on the Motorway: The Effect of Alternating Speed on Driver's Activation Level and Mental Effort
,”
Ergonomics
,
45
(
9
), pp.
605
618
.
45.
Malkovsky
,
E.
, and
Merrifield
,
C.
,
2012
, “
Exploring Relationship Between Boredom Sustained Attention
,”
Exp. Brain. Res.
,
221
(
1
), pp.
59
67
.
46.
London
,
H.
,
Schubert
,
D. S.
, and
Washburn
,
D.
,
1972
, “
Increase of Autonomic Arousal by Boredom
,”
J. Abnorm. Psychol.
,
80
(
1
), pp.
29
36
.
47.
Walker
,
A. D.
,
2011
, “Predicting Team Workload and Performance Using Team Autonomic Activity,”
Ph.D. thesis
, Clemson University, Clemson, SC.https://tigerprints.clemson.edu/cgi/viewcontent.cgi?referer=https://www.google.co.in/&httpsredir=1&article=1573&context=all_dissertations
48.
Parasuraman
,
R.
,
Sheridan
,
T. B.
, and
Wickens
,
C. D.
,
2000
, “
A Model for Types and Levels of Human Interaction With Automation
,”
IEEE Trans. Syst., Man Cybern.
,
30
(
3
), pp.
286
297
.
49.
Schroeter
,
R.
,
Oxtoby
,
J.
, and
Johnson
,
D.
,
2014
, “
AR and Gamification Concepts to Reduce Driver Boredom and Risk Taking Behaviours
,”
Sixth International Conference on Automotive User Interfaces and Interactive Vehicular Applications
(
AutomotiveUI '14
), Seattle, WA, Sept. 17–18, pp.
1
8
.
50.
Steinberger
,
F.
,
Schroeter
,
R.
, and
Watling
,
C. N.
,
2017
, “
From Road Distraction to Safe Driving: Evaluating the Effects of Boredom and Gamification on Driving Behaviour, Physiological Arousal, and Subjective Experience
,”
Comput. Hum. Behav.
,
75
, pp.
714
726
.
You do not currently have access to this content.