Abstract

The correlation between manufacturing parameters and the resulting surface topography is most often described with standardized profile surface texture parameters (R-parameters). However, in many cases, they represent a strong simplification as the most common parameters are often neither function-oriented nor unambiguously correlated with the manufacturing parameters. Therefore, we investigate whether a neural network is a suitable alternative to establish a more comprehensive correlation between the surface topography and the manufacturing parameters. The learned correlation provides possibilities to be used for subsequent monitoring of the manufacturing process. Our approach is to predict the manufacturing parameters from a measured topography dataset with a convolutional neural network as a regression model. As the training of neural networks requires large amounts of data, stochastic surface models are applied to generate artificial profiles and thus increase the available amount of data. The prediction accuracy and consequently its correlation with the manufacturing parameters are evaluated for a case study of an abrasive process. In this case study, it is first determined whether artificial or measured profiles and which of their representations (frequency or time dependent) provide the best information to train the network. The network featuring the most reliable prediction of the manufacturing parameters is then used for further analysis. By comparing this network with a linear regression model between manufacturing parameters and R-parameters, its performance is benchmarked and can be suggested as a suitable alternative to predict and monitor manufacturing parameters based on the measured surface topography.

References

1.
Jiang
,
X.
,
Scott
,
P. J.
,
Whitehouse
,
D. J.
, and
Blunt
,
L.
,
2007
, “
Paradigm Shifts in Surface Metrology. Part II. The Current Shift
,”
Proc. R. Soc. A
,
463
(
2085
), pp.
2071
2099
.
2.
Leach
,
R.
,
2013
,
Characterisation of Areal Surface Texture
,
Springer
,
Berlin/Heidelberg
.
3.
International Organization for Standardization (ISO)
,
2010
, Geometrical Product Specifications (GPS)–Surface Texture: Profile Method–Terms, Definitions and Surface Texture Parameters (ISO 4287: 1997 + Cor 1: 1998 + Cor 2: 2005 + Amd 1: 2009), Geneva, Switzerland.
4.
International Organization for Standardization (ISO)
,
2012
, Geometrical Product Specifications (GPS)–Surface Texture: Areal–Part 2: Terms, Definitions and Surface Texture Parameters (ISO 25178-2: 2012), Geneva, Switzerland.
5.
International Organization for Standardization (ISO)
,
2012
, Geometrical Product Specifications (GPS)–Surface Texture: Areal–Part 3: Specification Operators (ISO 25178-3: 2012), Geneva, Switzerland.
6.
International Organization for Standardization (ISO)
,
1998
, 1998-04. Geometrical Product Specifications (GPS)–Surface Texture: Profile Method; Surfaces Having Stratified Functional Properties–Part 2: Height Characterization Using the Linear Material Ratio Curve (ISO 13565-2: 1996), Geneva, Switzerland.
7.
Mathia
,
T. G.
,
Pawlus
,
P.
, and
Wieczorowski
,
M.
,
2011
, “
Recent Trends in Surface Metrology
,”
Wear
,
271
(
3–4
), pp.
494
508
.
8.
Leach
,
R. K.
, and
De Groot
,
P.
,
2015
, “
The Standards Rash—Is There a Cure?
,”
Int. J. Metrol. Qual. Eng.
,
6
(
1
), p.
101
.
9.
Wiehr
,
C.
,
2019
,
Anwenderunterstützung Bei Der Nutzung Und Überprüfung von Optischen 3D-Oberflächenmessgeräten
,
Technische Universität Kaiserslautern
,
Kaiserslautern
. urn:nbn:de:hbz:386-kluedo-56728
10.
Mauch
,
F.
,
Lyda
,
W.
, and
Osten
,
W.
,
2013
, “
Model-based assistance system for confocal measurements of rough surfaces
,”
Proc. SPIE 8788, Optical Measurement Systems for Industrial Inspection VIII, 87880U
,
Munich, Germany
,
May 13
, pp.
213
221
.
11.
Eifler
,
M.
,
Ströer
,
F.
,
Rief
,
S.
, and
Seewig
,
J.
,
2018
, “
Model Selection and Quality Estimation of Time Series Models for Artificial Technical Surface Generation
,”
Technologies
,
6
(
1
), p.
3
.
12.
Rief
,
S.
,
Ströer
,
F.
,
Kieß
,
S.
,
Eifler
,
M.
, and
Seewig
,
J.
,
2017
, “
An Approach for the Simulation of Ground and Honed Technical Surfaces for Training Classifiers
,”
Technologies
,
5
(
4
), p.
66
.
13.
Ogilvy
,
J. A.
, and
Foster
,
J. R.
,
1989
, “
Rough Surfaces: Gaussian or Exponential Statistics?
,”
J. Phys. D. Appl. Phys.
,
22
(
9
), pp.
1243
1251
.
14.
Uchidate
,
M.
,
Shimizu
,
T.
,
Iwabuchi
,
A.
, and
Yanagi
,
K.
,
2004
, “
Generation of Reference Data of 3D Surface Texture Using the Non-causal 2D AR Model
,”
Wear
,
257
(
12
), pp.
1288
1295
.
15.
Hüser
,
D.
,
Hüser
,
J.
,
Rief
,
S.
,
Seewig
,
J.
, and
Thomsen-Schmidt
,
P.
,
2016
, “
Procedure to Approximately Estimate the Uncertainty of Material Ratio Parameters Due to Inhomogeneity of Surface Roughness
,”
Meas. Sci. Technol.
,
27
(
8
), p.
085005
.
16.
Wu
,
J. J.
,
2004
, “
Simulation of Non-Gaussian Surfaces With FFT
,”
Tribol. Int.
,
37
(
4
), pp.
339
346
.
17.
Whitehouse
,
D. J.
,
2011
,
“Handbook of Surface and Nanometrology
, 2nd ed.,
CRC
,
Boca Raton, FL
.
18.
Jacobs
,
T. D. B.
,
Junge
,
T.
, and
Pastewka
,
L.
,
2017
, “
Quantitative Characterization of Surface Topography Using Spectral Analysis
,”
Surf. Topogr.: Metrol. Prop.
,
5
(
1
), p.
13001
.
19.
Krolczyk
,
G. M.
,
Maruda
,
R. W.
,
Nieslony
,
P.
, and
Wieczorowski
,
M.
,
2016
, “
Surface Morphology Analysis of Duplex Stainless Steel (DSS) in Clean Production Using the Power Spectral Density
,”
Measurement
,
94
, pp.
464
470
.
20.
Bakolas
,
V.
,
2003
, “
Numerical Generation of Arbitrarily Oriented Non-Gaussian Three-Dimensional Rough Surfaces
,”
Wear
,
254
(
5–6
), pp.
546
554
.
21.
Pawlus
,
P.
,
2008
, “
Simulation of Stratified Surface Topographies
,”
Wear
,
264
(
5–6
), pp.
457
463
.
22.
Patir
,
N.
,
1978
, “
A Numerical Procedure for Random Generation of Rough Surfaces
,”
Wear
,
47
(
2
), pp.
263
277
.
23.
Sharif Ullah
,
A.M.M.
, and
Harib
,
Khalifa H.
,
2006
, “
Knowledge Extraction From Time Series and Its Application to Surface Roughness Simulation
,”
Inf. Knowl. Syst. Manage.
,
5
(
2
), pp.
117
134
.
24.
Sharif Ullah
,
A. M. M.
,
Tamaki
,
Junichi
, and
Kubo
,
Akihiko
,
2010
, “
Modeling and Simulation of 3D Surface Finish of Grinding
,”
Adv. Mater. Res.
,
126–128
, pp.
672
677
. www.scientific.net/AMR.126-128.672
25.
Sharif Ullah
,
A. M. M.
,
2017
, “
Surface Roughness Modeling Using Q-Sequence
,”
Math. Comput. Appl.
,
22
(
2
), p.
33
.
26.
International Organization for Standardization (ISO)
,
1998
, Geometrical Product Specifications (GPS)—Surface Texture: Profile Method—Rules and Procedures for the Assessment of Surface Texture (ISO 4288: 1996), Geneva, Switzerland.
27.
Broersen
,
P. M. T.
,
2000
, “
Facts and Fiction in Spectral Analysis
,”
IEEE Trans. Instrum. Meas.
,
49
(
4
), pp.
766
772
.
28.
Broersen
,
P. M. T.
, and
Wensink
,
H. E.
,
1993
, “
On Finite Sample Theory for Autoregressive Model Order Selection
,”
IEEE Trans. Signal Process.
,
41
(
1
), p.
194
.
29.
Akaike
,
H.
,
1970
, “
Statistical Predictor Identification
,”
Ann. Inst. Stat. Math.
,
22
(
1
), pp.
203
217
.
30.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
31.
Kiranyaz
,
S.
,
Ince
,
T.
,
Hamila
,
R.
, and
Gabbouj
,
M.
,
2015
, “
Convolutional Neural Networks for patient-specific ECG classification
,”
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
,
Aug. 25–29
, pp.
2608
2611
.
32.
Abdeljaber
,
O.
,
Sassi
,
S.
,
Avci
,
O.
,
Kiranyaz
,
S.
,
Ibrahim
,
A. A.
, and
Gabbouj
,
M.
,
2019
, “
Fault Detection and Severity Identification of Ball Bearings by Online Condition Monitoring
,”
IEEE Trans. Indust. Elect.
,
66
(
10
), pp.
8136
8147
.
33.
Glorot
,
X.
,
Bordes
,
A.
, and
Bengio
,
Y.
,
2011
, “
Deep Sparse Rectifier Neural Networks
,”
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS)
,
Fort Lauderdale, FL
,
Apr. 11–13
, pp.
315
323
.
34.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
Proceedings of the 3rd International Conference on Learning Representations, ICLR
,
San Diego, CA
,
May 7–9
, pp.
1
15
.
You do not currently have access to this content.