Abstract

Physics informed neural networks have been recently gaining attention for effectively solving a wide variety of partial differential equations. Unlike the traditional machine learning techniques that require experimental or computational databases for training surrogate models, physics informed neural network avoids the excessive dependence on prior data by injecting the governing physical laws as regularizing constraints into the underlying neural network model. Although one can find several successful applications of physics informed neural network in the literature, a systematic study that compares the merits and demerits of this method with conventional machine learning methods is not well explored. In this study, we aim to investigate the effectiveness of this approach in solving inverse problems by comparing and contrasting its performance with conventional machine learning methods while solving four inverse test cases in heat transfer. We show that physics informed neural network is able to solve inverse heat transfer problems in a data-sparse manner by avoiding surrogate models altogether. This study is expected to contribute toward a more robust and effective solution for inverse heat transfer problems. We intend to sensitize researchers in inverse methods to this emerging approach and provide a preliminary analysis of its advantages and disadvantages.

References

1.
Zhang
,
B.
,
Mei
,
J.
,
Cui
,
M.
,
Gao
,
X.-w.
, and
Zhang
,
Y.
,
2019
, “
A General Approach for Solving Three-Dimensional Transient Nonlinear Inverse Heat Conduction Problems in Irregular Complex Structures
,”
Int. J. Heat Mass Transfer
,
140
, pp.
909
917
.
2.
Bergagio
,
M.
,
Li
,
H.
, and
Anglart
,
H.
,
2018
, “
An Iterative Finite-Element Algorithm for Solving Two-Dimensional Nonlinear Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
126
(
1
), pp.
281
292
.
3.
Singla
,
R. K.
, and
Das
,
R.
,
2013
, “
Application of Adomian Decomposition Method and Inverse Solution for a Fin With Variable Thermal Conductivity and Heat Generation
,”
Int J Heat Mass Transfer
,
66
(
3
), pp.
496
506
.
4.
Das
,
R.
,
2012
, “
Application of Genetic Algorithm for Unknown Parameter Estimations in Cylindrical Fin
,”
Appl. Soft. Comput.
,
12
(
11
), pp.
3369
3378
.
5.
Wang
,
J.
, and
Zabaras
,
N.
,
2004
, “
A Bayesian Inference Approach to the Inverse Heat Conduction Problem
,”
Int. J. Heat Mass Transfer
,
47
(
17
), pp.
3927
3941
.
6.
Gnanasekaran
,
N.
, and
Balaji
,
C.
,
2011
, “
A Bayesian Approach for the Simultaneous Estimation of Surface Heat Transfer Coefficient and Thermal Conductivity From Steady State Experiments on Fins
,”
Int. J. Heat Mass Transfer
,
54
(
13
), pp.
3060
3068
.
7.
Lee
,
K. H.
,
2019
, “
Application of Repulsive Particle Swarm Optimization for Inverse Heat Conduction Problem–Parameter Estimations of Unknown Plane Heat Source
,”
Int. J. Heat Mass Transfer
,
137
, pp.
268
279
.
8.
Das
,
R.
, and
Kundu
,
B.
,
2017
, “
Prediction of Heat Generation in a Porous Fin From Surface Temperature
,”
J. Thermophys Heat Transfer
,
31
(
4
), pp.
781
790
.
9.
Kumar
,
H.
, and
Nagarajan
,
G.
,
2018
, “
A Bayesian Inference Approach: Estimation of Heat Flux From Fin for Perturbed Temperature Data
,”
Sãdhanã
,
43
(
4
), pp.
1
6
.
10.
Mitra
,
S.
, and
Balaji
,
C.
,
2010
, “
A Neural Network Based Estimation of Tumour Parameters From a Breast Thermogram
,”
Int. J. Heat Mass Transfer
,
53
(
21
), pp.
4714
4727
.
11.
Ardizzone
,
L.
,
Kruse
,
J.
,
Wirkert
,
S. J.
,
Rahner
,
D.
,
Pellegrini
,
E. W.
,
Klessen
,
R. S.
,
Maier-Hein
,
L.
,
Rother
,
C.
, and
Köthe
,
U.
,
2018
, “
Analyzing Inverse Problems With Invertible Neural Networks
,”
arXiv preprint arXiv:1808.04730
.
12.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
.
13.
Dourado
,
A.
, and
Viana
,
F. A. C.
,
2020
, “
Physics-Informed Neural Networks for Missing Physics Estimation in Cumulative Damage Models: A Case Study in Corrosion Fatigue
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061007
.
14.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2020
, “
Solution of Biharmonic Equation in Complicated Geometries With Physics Informed Extreme Learning Machine
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
6
), p.
061004
.
15.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2020
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
.
16.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2022
, “
A Normal Equation-Based Extreme Learning Machine for Solving Linear Partial Differential Equations
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
1
), p.
014502
.
17.
Cai
,
S.
,
Wang
,
Z.
,
Wang
,
S.
,
Perdikaris
,
P.
, and
Karniadakis
,
G.
,
2021
, “
Physics-Informed Neural Networks (PINNs) for Heat Transfer Problems
,”
ASME. J. Heat. Transfer-Trans. ASME.
,
143
(
6
), p. 060801.
18.
Dwivedi
,
V.
,
Parashar
,
N.
, and
Srinivasan
,
B.
,
2021
, “
Distributed Learning Machines for Solving Forward and Inverse Problems in Partial Differential Equations
,”
Neurocomputing
,
420
(
5
), pp.
299
316
.
19.
Pang
,
G.
,
Lu
,
L.
, and
Karniadakis
,
G. E.
,
2019
, “
fpinns: Fractional Physics-Informed Neural Networks
,”
SIAM. J. Sci. Comput.
,
41
(
4
), pp.
A2603
A2626
.
20.
Anitescu
,
C.
,
Atroshchenko
,
E.
,
Alajlan
,
N.
, and
Rabczuk
,
T.
,
2019
, “
Artificial Neural Network Methods for the Solution of Second Order Boundary Value Problems
,”
Comput. Mater. Continua
,
59
(
1
), pp.
345
359
.
21.
He
,
Z.
,
Ni
,
F.
,
Wang
,
W.
, and
Zhang
,
J.
,
2021
, “
A Physics-Informed Deep Learning Method for Solving Direct and Inverse Heat Conduction Problems of Materials
,”
Mater. Today. Commun.
,
28
(
37–40
), p.
102719
.
22.
Chen
,
Y.
,
Lu
,
L.
,
Karniadakis
,
G. E.
, and
Negro
,
L. D.
,
2020
, “
Physics-Informed Neural Networks for Inverse Problems in Nano-Optics and Metamaterials
,”
Opt. Express
,
28
(
8
), pp.
11618
11633
.
23.
Shukla
,
K.
,
Jagtap
,
A. D.
,
Blackshire
,
J. L.
,
Sparkman
,
D.
, and
Em Karniadakis
,
G.
,
2022
, “
A Physics-Informed Neural Network for Quantifying the Microstructural Properties of Polycrystalline Nickel Using Ultrasound Data: A Promising Approach for Solving Inverse Problems
,”
IEEE. Signal Process. Mag.
,
39
(
1
), pp.
68
77
.
24.
Shukla
,
K.
,
Di Leoni
,
P. C.
,
Blackshire
,
J.
,
Sparkman
,
D.
, and
Karniadakis
,
G. E.
,
2020
, “
Physics-Informed Neural Network for Ultrasound Nondestructive Quantification of Surface Breaking Cracks
,”
J. Nondestruct. Eval.
,
39
(
3
), pp.
1
20
.
25.
Karniadakis
,
G. E.
,
Kevrekidis
,
I. G.
,
Lu
,
L.
,
Perdikaris
,
P.
,
Wang
,
S.
, and
Yang
,
L.
,
2021
, “
Physics-Informed Machine Learning
,”
Nat. Rev. Phys.
,
3
(
6
), pp.
422
440
.
26.
Hornik
,
K.
,
Stinchcombe
,
M.
, and
White
,
H.
,
1989
, “
Multilayer Feedforward Networks Are Universal Approximators
,”
Neural. Netw.
,
2
(
5
), pp.
359
366
.
27.
Baydin
,
A.
,
Pearlmutter
,
B.
,
Radul
,
A.
, and
Siskind
,
J.
,
2018
, “
Automatic Differentiation in Machine Learning: A Survey
,”
J. Mach. Learn. Res.
,
18
, pp.
1
43
.
28.
Liu
,
D. C.
, and
Nocedal
,
J.
,
1989
, “
On the Limited Memory Bfgs Method for Large Scale Optimization
,”
Math. Programm.
,
45
(
1–3
), pp.
503
528
.
29.
Wang
,
S.
,
Yu
,
X.
, and
Perdikaris
,
P.
,
2022
, “
When and Why Pinns Fail to Train: A Neural Tangent Kernel Perspective
,”
J. Comput. Phys.
,
449
(
6481
), p.
110768
.
30.
Liu
,
D.
, and
Wang
,
Y.
,
2020
, “
A Dual-Dimer Method for Training Physics-Constrained Neural Networks With Minimax Architecture
,”
Neural Networks
,
136
, pp.
112
125
.
31.
Hecht-Nielsen
,
R.
,
1992
,
Neural Networks for Perception
,
H.
Wechsler
, ed.,
Academic Press
,
Cambridge, MA
, pp.
65
93
.
32.
Shin
,
Y.
,
Darbon
,
J.
, and
Karniadakis
,
G. E.
,
2020
, “
On the Convergence and Generalization of Physics Informed Neural Networks
,”
arXiv preprint arXiv:2004.01806
.
33.
Ma
,
J.
,
Sun
,
Y.
,
Li
,
B.
, and
Chen
,
H.
,
2016
, “
Spectral Collocation Method for Radiative–Conductive Porous Fin With Temperature Dependent Properties
,”
Energy. Convers. Manage.
,
111
(
4
), pp.
279
288
.
You do not currently have access to this content.