Abstract

This paper aims to present a potential cybersecurity risk existing in mixed reality (MR)-based smart manufacturing applications that decipher digital passwords through a single RGB camera to capture the user’s mid-air gestures. We first created a test bed, which is an MR-based smart factory management system consisting of mid-air gesture-based user interfaces (UIs) on a video see-through MR head-mounted display. To interact with UIs and input information, the user’s hand movements and gestures are tracked by the MR system. We setup the experiment to be the estimation of the password input by users through mid-air hand gestures on a virtual numeric keypad. To achieve this goal, we developed a lightweight machine learning-based hand position tracking and gesture recognition method. This method takes either video streaming or recorded video clips (taken by a single RGB camera in front of the user) as input, where the videos record the users’ hand movements and gestures but not the virtual UIs. With the assumption of the known size, position, and layout of the keypad, the machine learning method estimates the password through hand gesture recognition and finger position detection. The evaluation result indicates the effectiveness of the proposed method, with a high accuracy of 97.03%, 94.06%, and 83.83% for 2-digit, 4-digit, and 6-digit passwords, respectively, using real-time video streaming as input with known length condition. Under the unknown length condition, the proposed method reaches 85.50%, 76.15%, and 77.89% accuracy for 2-digit, 4-digit, and 6-digit passwords, respectively.

References

1.
Zhou
,
K.
,
Liu
,
T.
, and
Zhou
,
L.
,
2015
, “
Industry 4.0: Towards Future Industrial Opportunities and Challenges
,”
12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)
,
Zhangjiajie, China
,
Aug. 15–17
, IEEE, pp.
2147
2152
.
2.
Egger
,
J.
, and
Masood
,
T.
,
2020
, “
Augmented Reality in Support of Intelligent Manufacturing—A Systematic Literature Review
,”
Comput. Ind. Eng.
,
140
, p.
106195
.
3.
Thomas
,
T.
,
2020
, “
Top 4 U.S. Manufacturing Challenges and How to Overcome Them
,” Online, https://blog.thomasnet.com/top-manufacturing-challenges, Accessed November 9, 2022.
4.
Liu
,
R.
,
Peng
,
C.
,
Zhang
,
Y.
,
Husarek
,
H.
, and
Yu
,
Q.
,
2021
, “
A Survey of Immersive Technologies and Applications for Industrial Product Development
,”
Comput. Graph.
,
100
, pp.
137
151
.
5.
Malik
,
A. A.
,
Masood
,
T.
, and
Bilberg
,
A.
,
2020
, “
Virtual Reality in Manufacturing: Immersive and Collaborative Artificial-Reality in Design of Human–Robot Workspace
,”
Int. J. Comput. Integr. Manuf.
,
33
(
1
), pp.
22
37
.
6.
Salah
,
B.
,
Abidi
,
M. H.
,
Mian
,
S. H.
,
Krid
,
M.
,
Alkhalefah
,
H.
, and
Abdo
,
A.
,
2019
, “
Virtual Reality-Based Engineering Education to Enhance Manufacturing Sustainability in Industry 4.0
,”
Sustainability
,
11
(
5
), p.
1477
.
7.
Makhataeva
,
Z.
, and
Varol
,
H. A.
,
2020
, “
Augmented Reality for Robotics: A Review
,”
Robotics
,
9
(
2
), p.
21
.
8.
Yang
,
W.
,
Xiao
,
Q.
, and
Zhang
,
Y.
,
2021
, “
An Augmented-Reality Based Human–Robot Interface for Robotics Programming in the Complex Environment
,”
International Manufacturing Science and Engineering Conference
,
Cincinnati, OH
,
June 21–25
, Vol. 85079, American Society of Mechanical Engineers, p. V002T07A003.
9.
Guo
,
Z.
,
Zhou
,
D.
,
Zhou
,
Q.
,
Zhang
,
X.
,
Geng
,
J.
,
Zeng
,
S.
,
Lv
,
C.
, and
Hao
,
A.
,
2020
, “
Applications of Virtual Reality in Maintenance During the Industrial Product Lifecycle: A Systematic Review
,”
J. Manuf. Syst.
,
56
, pp.
525
538
.
10.
Danielsson
,
O.
,
Holm
,
M.
, and
Syberfeldt
,
A.
,
2020
, “
Augmented Reality Smart Glasses in Industrial Assembly: Current Status and Future Challenges
,”
J. Ind. Inf. Integr.
,
20
, p.
100175
.
11.
xrtoday
,
2022
, “
The State of XR in Manufacturing and Industrial 2022
,” Online, https://www.xrtoday.com/mixed-reality/the-state-of-xr-in-manufacturing-and-industrial-2022/, Accessed November 1, 2022.
12.
Alismail
,
A.
,
Altulaihan
,
E.
,
Rahman
,
M. H.
, and
Sufian
,
A.
,
2022
, “
A Systematic Literature Review on Cybersecurity Threats of Virtual Reality (VR) and Augmented Reality (AR)
,”
Data Intelligence and Cognitive Informatics: Proceedings of ICDICI 2022
,
Tirunelveli, India
,
July 6–7
, pp.
761
774
.
13.
usa.kaspersky.com
,
2023
, “
What Are the Security and Privacy Risks of VR and AR
,” Online, https://usa.kaspersky.com/resource-center/threats/security-and-privacy-risks-of-ar-and-vr, Accessed October 6, 2022.
14.
Lu
,
Y.
, and
Da Xu
,
L.
,
2018
, “
Internet of Things (IoT) Cybersecurity Research: A Review of Current Research Topics
,”
IEEE Internet Things J.
,
6
(
2
), pp.
2103
2115
.
15.
Pacheco
,
J.
, and
Hariri
,
S.
,
2018
, “
Anomaly Behavior Analysis for IoT Sensors
,”
Trans. Emerg. Telecommun. Technol.
,
29
(
4
), p.
e3188
.
16.
Saharkhizan
,
M.
,
Azmoodeh
,
A.
,
Dehghantanha
,
A.
,
Choo
,
K.-K. R.
, and
Parizi
,
R. M.
,
2020
, “
An Ensemble of Deep Recurrent Neural Networks for Detecting IoT Cyber Attacks Using Network Traffic
,”
IEEE Internet Things J.
,
7
(
9
), pp.
8852
8859
.
17.
Ayoade
,
G.
,
El-Ghamry
,
A.
,
Karande
,
V.
,
Khan
,
L.
,
Alrahmawy
,
M.
, and
Rashad
,
M. Z.
,
2019
, “
Secure Data Processing for IoT Middleware Systems
,”
J. Supercomput.
,
75
(
8
), pp.
4684
4709
.
18.
Niu
,
W.
,
Zhang
,
X.
,
Du
,
X.
,
Zhao
,
L.
,
Cao
,
R.
, and
Guizani
,
M.
,
2020
, “
A Deep Learning Based Static Taint Analysis Approach for IoT Software Vulnerability Location
,”
Measurement
,
152
, p.
107139
.
19.
Zhang
,
R.
,
Zhang
,
N.
,
Du
,
C.
,
Lou
,
W.
,
Hou
,
Y. T.
, and
Kawamoto
,
Y.
,
2017
, “
From Electromyogram to Password: Exploring the Privacy Impact of Wearables in Augmented Reality
,”
ACM Trans. Intell. Syst. Technol.
,
9
(
1
), pp.
1
20
.
20.
Lehman
,
S. M.
,
Alrumayh
,
A. S.
,
Kolhe
,
K.
,
Ling
,
H.
, and
Tan
,
C. C.
,
2022
, “
Hidden in Plain Sight: Exploring Privacy Risks of Mobile Augmented Reality Applications
,”
ACM Trans. Privacy Security
,
25
(
4
), p.
26
.
21.
Kreider
,
C.
,
2018
, “
The Discoverability of Password Entry Using Virtual Keyboards in an Augmented Reality Wearable: An Initial Proof of Concept
,” https://aisel.aisnet.org/sais2018/23.
22.
Luo
,
S.
,
Hu
,
X.
, and
Yan
,
Z.
,
2022
, “
Holologger: Keystroke Inference on Mixed Reality Head Mounted Displays
,”
2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)
,
Christchurch, New Zealand
,
Mar. 12–16
, IEEE, pp.
445
454
.
23.
Bimber
,
O.
, and
Raskar
,
R.
,
2006
, “
Modern Approaches to Augmented Reality
,”
ACM SIGGRAPH 2006 Courses
,
Boston, MA
,
July 30–Aug. 3
.
24.
Hoppenstedt
,
B.
,
Kammerer
,
K.
,
Reichert
,
M.
,
Spiliopoulou
,
M.
, and
Pryss
,
R.
,
2019
, “
Convolutional Neural Networks for Image Recognition in Mixed Reality Using Voice Command Labeling
,”
International Conference on Augmented Reality, Virtual Reality and Computer Graphics
,
Santa Maria al Bagno, Italy
,
June 24–27
, Springer, pp.
63
70
.
25.
Park
,
H. M.
,
Lee
,
S. H.
, and
Choi
,
J. S.
,
2008
, “
Wearable Augmented Reality System Using Gaze Interaction
,”
2008 7th IEEE/ACM International Symposium on Mixed and Augmented Reality
,
Cambridge, UK
,
Sept. 15–18
, IEEE, pp.
175
176
.
26.
Kytö
,
M.
,
Ens
,
B.
,
Piumsomboon
,
T.
,
Lee
,
G. A.
, and
Billinghurst
,
M.
,
2018
, “
Pinpointing: Precise Head- and Eye-Based Target Selection for Augmented Reality
,”
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
,
Montréal, Canada
,
Apr. 21–26
, pp.
1
14
.
27.
Shen
,
Y.
,
Ong
,
S.-K.
, and
Nee
,
A. Y.
,
2011
, “
Vision-Based Hand Interaction in Augmented Reality Environment
,”
Int. J. Human–Computer Interact.
,
27
(
6
), pp.
523
544
.
28.
Gugenheimer
,
J.
,
Dobbelstein
,
D.
,
Winkler
,
C.
,
Haas
,
G.
, and
Rukzio
,
E.
,
2016
, “
Facetouch: Touch Interaction for Mobile Virtual Reality
,”
Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems
,
San Jose, CA
,
May 7–12
, pp.
3679
3682
.
29.
Yang
,
T.-H.
,
Kim
,
J. R.
,
Jin
,
H.
,
Gil
,
H.
,
Koo
,
J.-H.
, and
Kim
,
H. J.
,
2021
, “
Recent Advances and Opportunities of Active Materials for Haptic Technologies in Virtual and Augmented Reality
,”
Adv. Funct. Mater.
,
31
(
39
), p.
2008831
.
30.
Bailenson
,
J.
,
2018
, “
Protecting Nonverbal Data Tracked in Virtual Reality
,”
JAMA Pediatrics
,
172
(
10
), pp.
905
906
.
31.
JofréPasinetti
,
N.
,
Rodríguez
,
G.
,
Alvarado
,
Y.
,
Fernández
,
J.
, and
Guerrero
,
R. A.
,
2016
, “
Non-verbal Communication for a Virtual Reality Interface
,”
XXII Congreso Argentino de Ciencias de la Computación (CACIC 2016)
,
Provincia de San Luis, Argentina
,
Oct. 3–7
.
32.
Goh
,
E. S.
,
Sunar
,
M. S.
, and
Ismail
,
A. W.
,
2019
, “
3d Object Manipulation Techniques in Handheld Mobile Augmented Reality Interface: A Review
,”
IEEE Access
,
7
, pp.
40581
40601
.
33.
Oliveira
,
M.
,
Arica
,
E.
,
Pinzone
,
M.
,
Fantini
,
P.
, and
Taisch
,
M.
,
2019
, “
Human-Centered Manufacturing Challenges Affecting European Industry 4.0 Enabling Technologies
,”
International Conference on Human–Computer Interaction
,
Orlando, FL
,
July 26–31
, Springer, pp.
507
517
.
34.
Lawson
,
G.
,
Herriotts
,
P.
,
Malcolm
,
L.
,
Gabrecht
,
K.
, and
Hermawati
,
S.
,
2015
, “
The Use of Virtual Reality and Physical Tools in the Development and Validation of Ease of Entry and Exit in Passenger Vehicles
,”
Appl. Ergon.
,
48
, pp.
240
251
.
35.
Matsas
,
E.
, and
Vosniakos
,
G.-C.
,
2017
, “
Design of a Virtual Reality Training System for Human–Robot Collaboration in Manufacturing Tasks
,”
Int. J. Interactive Des. Manuf.
,
11
(
2
), pp.
139
153
.
36.
Palmarini
,
R.
,
Erkoyuncu
,
J. A.
,
Roy
,
R.
, and
Torabmostaedi
,
H.
,
2018
, “
A Systematic Review of Augmented Reality Applications in Maintenance
,”
Robot. Comput.-Integr. Manuf.
,
49
, pp.
215
228
.
37.
Ong
,
S.-K.
,
Yew
,
A.
,
Thanigaivel
,
N. K.
, and
Nee
,
A. Y.
,
2020
, “
Augmented Reality-Assisted Robot Programming System for Industrial Applications
,”
Robot. Comput.-Integr. Manuf.
,
61
, p.
101820
.
38.
Gattullo
,
M.
,
Scurati
,
G. W.
,
Evangelista
,
A.
,
Ferrise
,
F.
,
Fiorentino
,
M.
, and
Uva
,
A. E.
,
2019
, “
Informing the Use of Visual Assets in Industrial Augmented Reality
,”
International Conference of the Italian Association of Design Methods and Tools for Industrial Engineering
,
Modena, Italy
,
Sept. 9–10
, Springer, pp.
106
117
.
39.
Yew
,
A.
,
Ong
,
S.
, and
Nee
,
A. Y.
,
2016
, “
Towards a Griddable Distributed Manufacturing System With Augmented Reality Interfaces
,”
Robot. Comput.-Integr. Manuf.
,
39
, pp.
43
55
.
40.
Maharjan
,
D.
,
Agüero
,
M.
,
Mascarenas
,
D.
,
Fierro
,
R.
, and
Moreu
,
F.
,
2021
, “
Enabling Human-Infrastructure Interfaces for Inspection Using Augmented Reality
,”
Struct. Health Monit.
,
20
(
4
), pp.
1980
1996
.
41.
Wang
,
P.
,
Bai
,
X.
,
Billinghurst
,
M.
,
Zhang
,
S.
,
Wei
,
S.
,
Xu
,
G.
,
He
,
W.
,
Zhang
,
X.
, and
Zhang
,
J.
,
2021
, “
3dgam: Using 3d Gesture and CAD Models for Training on Mixed Reality Remote Collaboration
,”
Multimedia Tools Appl.
,
80
(
20
), pp.
31059
31084
.
42.
Casey
,
P.
,
Baggili
,
I.
, and
Yarramreddy
,
A.
,
2021
, “
Immersive Virtual Reality Attacks and the Human Joystick
,”
IEEE Trans. Dependable Secure Comput.
,
18
(
2
), pp.
550
562
.
43.
Valluripally
,
S.
,
Gulhane
,
A.
,
Hoque
,
K. A.
, and
Calyam
,
P.
,
2022
, “
Modeling and Defense of Social Virtual Reality Attacks Inducing Cybersickness
,”
IEEE Trans. Dependable Secure Comput.
,
19
(
6
), pp.
4127
4144
.
44.
Meyer-Lee
,
G.
,
Shang
,
J.
, and
Wu
,
J.
,
2018
, “
Location-Leaking Through Network Traffic in Mobile Augmented Reality Applications
,”
IEEE 37th International Performance Computing and Communications Conference (IPCCC)
,
Orlando, FL
,
Nov. 17–19
, pp.
1
8
.
45.
Al Arafat
,
A.
,
Guo
,
Z.
, and
Awad
,
A.
,
2021
, “
Vr-spy: A Side-Channel Attack on Virtual Key-Logging in VR Headsets
,”
2021 IEEE Virtual Reality and 3D User Interfaces (VR)
,
Lisbon, Portugal
,
Mar. 27–Apr. 2
, IEEE, pp.
564
572
.
46.
Ling
,
Z.
,
Li
,
Z.
,
Chen
,
C.
,
Luo
,
J.
,
Yu
,
W.
, and
Fu
,
X.
,
2019
, “
I Know What You Enter on Gear VR
,”
IEEE Conference on Communications and Network Security (CNS)
,
Washington, DC
,
June 10–12
, pp.
241
249
.
47.
Giaretta
,
A.
,
2022
, “
Security and Privacy in Virtual Reality—A Literature Survey
,” preprint arXiv:2205.00208.
48.
Shang
,
J.
,
Chen
,
S.
,
Wu
,
J.
, and
Yin
,
S.
,
2022
, “
Arspy: Breaking Location-Based Multi-player Augmented Reality Application for User Location Tracking
,”
IEEE Trans. Mobile Comput.
,
21
(
2
), pp.
433
447
.
49.
Maloney
,
D.
,
Zamanifard
,
S.
, and
Freeman
,
G.
,
2020
, “
Anonymity Vs. Familiarity: Self-disclosure and Privacy in Social Virtual Reality
,”
26th ACM Symposium on Virtual Reality Software and Technology, VRST ’20
,
Ottawa, Canada
,
Nov. 1–4
.
50.
Falk
,
B.
,
Meng
,
Y.
,
Zhan
,
Y.
, and
Zhu
,
H.
,
2021
, “
Poster: Reavatar: Virtual Reality De-anonymization Attack Through Correlating Movement Signatures
,”
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS ’21
,
Seoul, South Korea
,
Nov. 15–19
, pp.
2405
2407
.
51.
De Guzman
,
J. A.
,
Thilakarathna
,
K.
, and
Seneviratne
,
A.
,
2019
, “
Security and Privacy Approaches in Mixed Reality: A Literature Survey
,”
ACM Comput. Surveys
,
52
(
6
), pp.
1
37
.
52.
Meng
,
Y.
,
Li
,
J.
,
Zhu
,
H.
,
Liang
,
X.
,
Liu
,
Y.
, and
Ruan
,
N.
,
2019
, “
Revealing Your Mobile Password Via Wifi Signals: Attacks and Countermeasures
,”
IEEE Trans. Mobile Comput.
,
19
(
2
), pp.
432
449
.
53.
Wang
,
Y.
,
Cai
,
W.
,
Gu
,
T.
, and
Shao
,
W.
,
2019
, “
Your Eyes Reveal Your Secrets: An Eye Movement Based Password Inference on Smartphone
,”
IEEE Trans. Mobile Comput.
,
19
(
11
), pp.
2714
2730
.
54.
Oculus
,
2020
, “
Oculus Integration: Integration
,” Online, https://assetstore.unity.com/packages/tools/integration/oculus-integration-82022#description, Accessed October 6, 2022.
55.
Microsoft
,
2020
, “
Unity: Mixed Reality Toolkit (MRTK)
,” Online, https://github.com/microsoft/MixedRealityToolkit-Unity, Accessed October 6, 2022.
56.
Enox Software
,
2014
. “
Opencv for Unity
,” Online, https://assetstore.unity.com/packages/tools/integration/opencv-for-unity-21088#releases, Accessed October 6, 2022.
57.
Voigt-Antons
,
J.-N.
,
Kojic
,
T.
,
Ali
,
D.
, and
Möller
,
S.
,
2020
, “
Influence of Hand Tracking as a Way of Interaction in Virtual Reality on User Experience
,”
2020 Twelfth International Conference on Quality of Multimedia Experience (QoMEX)
,
Athlone, Ireland
,
May 26–28
, IEEE, pp.
1
4
.
58.
Lugaresi
,
C.
,
Tang
,
J.
,
Nash
,
H.
,
McClanahan
,
C.
,
Uboweja
,
E.
,
Hays
,
M.
,
Zhang
,
F.
,
Chang
,
C.-L.
,
Yong
,
M. G.
,
Lee
,
J.
,
Chang
,
W.
,
Hua
,
W.
,
Georg
,
M.
, and
Grundmann
,
M.
,
2019
, “
Mediapipe: A Framework for Building Perception Pipelines
,”
Third Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR) 2019
,
Long Beach, CA
,
June 17
.
59.
Shanthakumar
,
V. A.
,
Peng
,
C.
,
Hansberger
,
J.
,
Cao
,
L.
,
Meacham
,
S.
, and
Blakely
,
V.
,
2020
, “
Design and Evaluation of a Hand Gesture Recognition Approach for Real-Time Interactions
,”
Multimedia Tools Appl.
,
79
(
25
), pp.
17707
17730
.
60.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
You do not currently have access to this content.