Abstract

Access to large amounts of diverse design solutions can support designers during the early stage of the design process. In this article, we explored the efficacy of large language models (LLMs) in producing diverse design solutions, investigating the level of impact that parameter tuning and various prompt engineering techniques can have on the diversity of LLM-generated design solutions. Specifically, we used an LLM (GPT-4) to generate a total of 4000 design solutions across five distinct design topics, eight combinations of parameters, and eight different types of prompt engineering techniques, leading to 50 LLM-generated solutions for each combination of method and design topic. Those LLM-generated design solutions were compared against 100 human-crowdsourced solutions in each design topic using the same set of diversity metrics. Results indicated that, across the five design topics tested, human-generated solutions consistently have greater diversity scores. Using a post hoc logistic regression analysis, we also found that there is a meaningful semantic divide between humans and LLM-generated solutions in some design topics, but not in others. Taken together, these results contribute to the understanding of LLMs’ capabilities and limitations in generating a large volume of diverse design solutions and offer insights for future research that leverages LLMs to generate diverse design solutions for a broad range of design tasks (e.g., inspirational stimuli).

References

1.
Dahl
,
D. W.
, and
Moreau
,
P.
,
2002
, “
The Influence and Value of Analogical Thinking During New Product Ideation
,”
J. Market. Res.
,
39
(
1
), pp.
47
60
.
2.
Kwon
,
E.
,
Huang
,
F.
, and
Goucher-Lambert
,
K.
,
2022
, “
Enabling Multi-Modal Search for Inspirational Design Stimuli Using Deep Learning. Artificial Intelligence for Engineering Design
,”
Anal. Manuf.
,
36
, p.
e22
.
3.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2015
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
.
4.
Linsey
,
J. S.
,
Wood
,
K. L.
, and
Markman
,
A. B.
,
2008
, “
Modality and Representation in Analogy. Artificial Intelligence for Engineering Design
,”
Anal. Manuf.
,
22
(
2
), pp.
85
100
.
5.
Goucher-Lambert
,
K.
, and
Cagan
,
J.
,
2019
, “
Crowdsourcing Inspiration: Using Crowd Generated Inspirational Stimuli to Support Designer Ideation
,”
Des. Stud.
,
61
(
1
), pp.
1
29
.
6.
Yu
,
L.
,
Kittur
,
A.
, and
Kraut
,
R. E.
,
2014
, “
Searching for Analogical Ideas With Crowds
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,”
Toronto, Canada
,
Apr. 26–May 1
,
Association for Computing Machinery
,
New York, NY
, pp.
1225
1234
.
7.
Ma
,
K.
,
Grandi
,
D.
,
McComb
,
C.
, and
Goucher-Lambert
,
K.
,
2023
, “
Conceptual Design Generation Using Large Language Models
,”
Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 6: 35th International Conference on Design Theory and Methodology (DTM)
,
Boston, MA
,
Aug. 20–23
,
ASME
, p.
V006T06A021
.
8.
Zhu
,
Q.
,
Zhang
,
X.
, and
Luo
,
J.
,
2023
, “
Biologically Inspired Design Concept Generation Using Generative Pre-Trained Transformers
,”
ASME. J. Mech. Des.
,
145
(
4
), p.
041409
.
9.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.
10.
Jiang
,
S.
,
Hu
,
J.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Data-Driven Design-By-Analogy: State-of-the-Art and Future Directions
,”
ASME. J. Mech. Des.
,
144
(
2
), p.
020801
.
11.
Poetz
,
M. K.
, and
Schreier
,
M.
,
2012
, “
The Value of Crowdsourcing: Can Users Really Compete With Professionals in Generating New Product Ideas
,”
J. Product Innovat. Manage.
,
29
(
2
), pp.
245
256
.
12.
Yu
,
L.
,
Kittur
,
A.
, and
Kraut
,
R. E.
,
2014
, “
Distributed Analogical Idea Generation: Inventing With Crowds
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,
Toronto, Canada
,
Apr. 26–May 1
,
Association for Computing Machinery
,
New York, NY
, pp.
1245
1254
.
13.
Brown
,
T.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J. D.
,
Dhariwal
,
P.
, and
Neelakantan
,
A.
, et al.
2020
, “
Language Models are Few-Shot Learners
,”
Advances in Neural Information Processing Systems
, Vol.
33
,
H.
Larochelle
,
M.
Ranzato
,
R.
Hadsell
,
M.
Balcan
, and
H.
Lin
, eds.,
Curran Associates, Inc.
, pp.
1877
1901
.
14.
OpenAI (2023)
,
2024
, “
GPT-4 Technical Report
.” 2303.08774, https://arxiv.org/abs/2303.08774.
15.
Zhu
,
Q.
, and
Luo
,
J.
,
2023
, “
Generative Transformers for Design Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
23
(
4
), p.
041003
.
16.
Wang
,
B.
,
Zuo
,
H.
,
Cai
,
Z.
,
Yin
,
Y.
,
Childs
,
P.
,
Sun
,
L.
, and
Chen
,
L.
,
2023
, “
A Task-Decomposed AI-Aided Approach for Generative Conceptual Design
,”
Proceedings of the ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 35th International Conference on Design Theory and Methodology (DTM)
,
Boston, MA
,
Aug. 20–23
, Vol.
6
,
ASME
, p.
V006T06A009
.
17.
Goucher-Lambert
,
K.
,
Gyory
,
J. T.
,
Kotovsky
,
K.
, and
Cagan
,
J.
,
2020
, “
Adaptive Inspirational Design Stimuli: Using Design Output to Computationally Search for Stimuli That Impact Concept Generation
,”
ASME J. Mech. Des.
,
142
(
9
), p.
091401
.
18.
Vaswani
,
A.
,
Shazeer
,
N.
,
Parmar
,
N.
,
Uszkoreit
,
J.
,
Jones
,
L.
,
Gomez
,
A. N.
,
Kaiser
,
L.
, and
Polosukhin
,
I.
,
2017
, “Attention Is All you Need,”
Advances in Neural Information Processing Systems
,
Long Beach, CA
, Vol.
30
,
I.
Guyon
,
U. V.
Luxburg
,
S.
Bengio
,
H.
Wallach
,
R.
Fergus
,
S.
Vishwanathan
, and
R.
Garnett
, eds.,
Curran Associates, Inc
.
19.
Wei
,
J.
,
Tay
,
Y.
,
Bommasani
,
R.
,
Raffel
,
C.
,
Zoph
,
B.
,
Borgeaud
,
S.
, and
Yogatama
,
D.
, et al.
2022
, “Emergent Abilities of Large Language Models,” Trans. Mach. Learn. Res.
20.
Touvron
,
H.
,
Lavril
,
T.
,
Izacard
,
G.
,
Martinet
,
X.
,
Lachaux
,
M.-A.
,
Lacroix
,
T.
, and,
Roziére
,
B.
, et al.
2023
, “
LLaMA: Open and Efficient Foundation Language Models
,”
arXiv
. https://arxiv.org/abs/2302.13971
21.
Driess
,
D.
,
Xia
,
F.
,
Sajjadi
,
M. S. M.
,
Lynch
,
C.
,
Chowdhery
,
A.
,
Ichter
,
B.
, and,
Wahid
,
A.
, et al.
2023
, “
PaLM-E: An Embodied Multimodal Language Model
,”
arXiv
. https://arxiv.org/abs/2303.03378
22.
Wei
,
J.
,
Wang
,
X.
,
Schuurmans
,
D.
,
Bosma
,
M.
,
Ichter
,
B.
,
Xia
,
F.
,
Chi
,
E. H.
,
Le
,
Q. V.
, and
Zhou
,
D.
,
2024
, “
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
,”
Proceedings of the 36th International Conference on Neural Information Processing Systems
,
New Orleans, LA
,
Dec. 10–16
,
Curran Associates Inc.
,
Red Hook, NY
, pp. 24824 –24837.
23.
Kojima
,
T.
,
Gu
,
S. S.
,
Reid
,
M.
,
Matsuo
,
Y.
, and
Iwasawa
,
Y.
,
2022
, “
Large Language Models Are Zero-Shot Reasoners
,”
Proceedings of the 36th International Conference on Neural Information Processing Systems
,
New Orleans, LA
,
Nov. 28–Dec. 9
,
Curran Associates Inc.
,
Red Hook, NY
.
24.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of “Near” and “Far”: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
25.
Chan
,
J.
, and
Schunn
,
C.
,
2015
, “
The Impact of Analogies on Creative Concept Generation: Lessons From An In Vivo Study in Engineering Design
,”
Cogn. Sci.
,
39
(
1
), pp.
126
155
.
26.
Regenwetter
,
L.
,
Srivastava
,
A.
,
Gutfreund
,
D.
, and
Ahmed
,
F.
,
2023
, “
Beyond Statistical Similarity: Rethinking Metrics for Deep Generative Models in Engineering Design
,”
Comput. Aid. Des.
,
165
(
12
), p.
103609
.
27.
Podani
,
J.
,
2009
, “
Convex Hulls, Habitat Filtering, and Functional Diversity: Mathematical Elegance Versus Ecological Interpretability
,”
Commun. Ecol.
,
10
(
2
), pp.
244
250
.
28.
Kulesza
,
A.
, and
Taskar
,
B.
,
2012
, “
Determinantal Point Processes for Machine Learning
,”
Found. Trends Mach. Learn.
,
5
(
2–3
), pp.
123
286
.
29.
Chen
,
W.
, and
Ahmed
,
F.
,
2021
, “
PaDGAN: Learning to Generate High-Quality Novel Designs
,”
ASME J. Mech. Des.
,
143
(
3
), p.
031703
.
30.
Linsey
,
J. S.
, and
Viswanathan
,
V. K.
,
2014
, “Overcoming Cognitive Challenges in Bioinspired Design and Analogy,”
Biologically Inspired Design: Computational Methods and Tools
,
A.
Goel
,
D.
McAdams
, and
R.
Stone
, eds.,
Springer
,
London
, Chap. 9.
31.
Tseng
,
I.
,
Moss
,
J.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2008
, “
The Role of Timing and Analogical Similarity in the Stimulation of Idea Generation in Design
,”
Des. Stud.
,
29
(
3
), pp.
203
221
.
32.
Toh
,
C. A.
, and
Miller
,
S. R.
,
2014
, “
The Impact of Example Modality and Physical Interactions on Design Creativity
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091004
.
33.
Linsey
,
J. S.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
.
34.
Shinn
,
N.
,
Cassano
,
F.
,
Berman
,
E.
,
Gopinath
,
A.
,
Narasimhan
,
K.
, and
Yao
,
S.
,
2023
, “
Reflexion: Language Agents With Verbal Reinforcement Learning
,”
arXiv
. https://arxiv.org/abs/2303.11366
35.
White
,
J.
,
Fu
,
Q.
,
Hays
,
S.
,
Sandborn
,
M.
,
Olea
,
C.
,
Gilbert
,
H.
,
Elnashar
,
A.
,
Spencer-Smith
,
J.
, and
Schmidt
,
D. C.
,
2023
, “
A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT
,”
arXiv
. https://arxiv.org/abs/2302.11382
36.
Reimers
,
N.
, and
Gurevych
,
I.
,
2019
, “
Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
,”
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the Ninth International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)
,
Hong Kong, China
,
Nov. 3–7
,
K.
Inui
,
J.
Jiang
,
V.
Ng
, and
X.
Wan
, eds.,
Association for Computational Linguistics
, pp.
3982
3992
.
37.
Walsh
,
H. S.
, and
Andrade
,
S. R.
,
2022
, “
Semantic Search With Sentence-BERT for Design Information Retrieval
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
, Vol.
2
,
p.
V002T02A066
.
38.
Tsumuraya
,
K.
,
Amano
,
M.
,
Uehara
,
M.
, and
Adachi
,
Y.
,
2022
, “
Topic-Based Clustering of Japanese Sentences Using Sentence-BERT
,”
2022 Tenth International Symposium on Computing and Networking Workshops (CANDARW)
,
Himeji, Japan
,
Nov. 21–24
, pp.
255
260
.
39.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
(
Springer Series in Statistics
; 2nd ed.),
Springer
,
New York, NY
.
40.
Bergstra
,
J.
,
Bardenet
,
R.
,
Bengio
,
Y.
, and
Kégl
,
B.
,
2011
, “Algorithms for Hyper-Parameter Optimization,”
Advances in Neural Information Processing Systems
,
Granada, Spain
, Vol.
24
,
J.
Shawe-Taylor
,
R.
Zemel
,
P.
Bartlett
,
F.
Pereira
, and
K.
Weinberger
, eds.,
Curran Associates, Inc
.
41.
Barto
,
A. G.
,
1997
, “Chapter 2—Reinforcement Learning,”
Neural Systems for Control
,
O.
Omidvar
and
D. L.
Elliott
, eds.,
Academic Press
,
San Diego, CA
, pp.
7
30
.
42.
Finn
,
C.
,
Abbeel
,
P.
, and
Levine
,
S.
,
2017
, “
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
,”
Proceedings of the 34th International Conference on Machine Learning
, Vol.
70
, JMLR.org, pp.
1126
1135
.
43.
Kittur
,
A.
,
Yu
,
L.
,
Hope
,
T.
,
Chan
,
J.
,
Lifshitz-Assaf
,
H.
,
Gilon
,
K.
,
Ng
,
F.
,
Kraut
,
R. E.
, and
Shahaf
,
D.
,
2019
, “
Scaling Up Analogical Innovation With Crowds and AI
,”
Proc. Natl. Acad. Sci. U. S. A.
,
116
(
6
), pp.
1870
1877
.
You do not currently have access to this content.