Abstract

In this work, we present a framework for data-driven digital twins for real-time machine monitoring. Data-driven digital twins are gaining prominence in a variety of industrial applications owing to their ability to capture complex relationships between sensor data and system behavior. The computational efficiency gained using such twins is critical for real-time machine monitoring and diagnostics with timely and interactive human intervention. One of the fundamental challenges in the current data-driven digital twins is a lack of understanding of how different data synthesis strategies of the same sensor data affect the predictive power of the twin models typically obtained through statistical learning. As a result, the interactive support for enabling human intervention and machine health monitoring is not generalized for different machine configurations and fault conditions. Using turbomachinery as a concrete demonstrative context, we investigate two fundamentally different data synthesis strategies, namely, integrated and combinatorial, as digital twins for a rotating machine. Specifically, we consider a rotor kit as a machine component, develop a synthetic dataset using simulations, and conduct systematic studies on the predictive performance of reduced-order models trained using the different data synthesis strategies. Our experiments show that the combinatorial dataset offers higher prediction accuracy in comparison to randomized data generation. Moreover, we created a cloud-based augmented reality (AR) mobile tool to show the feasibility of our methodology in developing potential machine monitoring applications with human-in-the-loop components.

References

1.
Chua
,
P. C.
,
Moon
,
S. K.
,
Ng
,
Y. T.
, and
Ng
,
H. Y.
,
2022
, “
A Surrogate Model to Predict Production Performance in Digital Twin-Based Smart Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
),
p. 031007
.
2.
Friederich
,
J.
,
Francis
,
D. P.
,
Lazarova-Molnar
,
S.
, and
Mohamed
,
N.
,
2022
, “
A Framework for Data-Driven Digital Twins of Smart Manufacturing Systems
,”
Comput. Ind.
,
136
, p.
103586
.
3.
Lei
,
Y.
,
Yang
,
B.
,
Jiang
,
X.
,
Jia
,
F.
,
Li
,
N.
, and
Nandi
,
A. K.
,
2020
, “
Applications of Machine Learning to Machine Fault Diagnosis: A Review and Roadmap
,”
Mech. Syst. Signal Process.
,
138
, p.
106587
.
4.
Kuo
,
Y. H.
,
Pilati
,
F.
,
Qu
,
T.
, and
Huang
,
G. Q.
,
2021
, “
Digital Twin-Enabled Smart Industrial Systems: Recent Developments and Future Perspectives
,”
Int. J. Comput. Integr. Manuf.
,
34
(
7–8
), pp.
685
689
.
5.
Xu
,
W.
,
Cui
,
J.
,
Li
,
L.
,
Yao
,
B.
,
Tian
,
S.
, and
Zhou
,
Z.
,
2021
, “
Digital Twin-Based Industrial Cloud Robotics: Framework, Control Approach and Implementation
,”
J. Manuf. Syst.
58
(
PB
), pp.
196
209
.
6.
Juarez
,
M. G.
,
Botti
,
V. J.
, and
Giret
,
A. S.
,
2021
, “
Digital Twins: Review and Challenges
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
),
p. 030802.
7.
Bradshaw
,
P.
,
1996
, “
Turbulence Modeling With Application to Turbomachinery
,”
Prog. Aerosp. Sci.
,
32
(
6
), pp.
575
624
.
8.
Edwards
,
S.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
,
1998
, “
Fault Diagnosis of Rotating Machinery
,”
Shock Vib. Digest
,
30
(
1
), pp.
4
13
.
9.
Yanik
,
Y.
,
Ekwaro-Osire
,
S.
,
Dias
,
J. P.
,
Porto
,
E. H.
,
Alves
,
D. S.
,
Machado
,
T. H.
,
Bregion Daniel
,
G.
,
de Castro
,
H. F.
, and
Cavalca
,
K. L.
,
2024
, “
Verification and Validation of Rotating Machinery Using Digital Twin
,”
ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng.
,
10
(
1
).
10.
Varney
,
P.
, and
Green
,
I.
,
2013
, “
Rotordynamic Crack Diagnosis: Distinguishing Crack Depth and Location
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
),
p. 112101
.
11.
Mihai
,
S.
,
Yaqoob
,
M.
,
Hung
,
D. V.
,
Davis
,
W.
,
Towakel
,
P.
,
Raza
,
M.
, and
Karamanoglu
,
M.
,
2022
, “
Digital Twins: A Survey on Enabling Technologies, Challenges, Trends and Future Prospects
,”
IEEE Commun. Surv. Tutorials
,
24
(
4
), pp.
2255
2291
.
12.
Aderiani
,
A. R.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
Individualizing Locator Adjustments of Assembly Fixtures Using a Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041019
.
13.
Adebiyi
,
T. A.
,
Ajenifuja
,
N. A.
, and
Zhang
,
R.
,
2024
, “
Digital Twins and Civil Engineering Phases: Reorienting Adoption Strategies
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
10
), p.
100801
.
14.
Zeb
,
S.
,
Mahmood
,
A.
,
Hassan
,
S. A.
,
Piran
,
M. J.
,
Gidlund
,
M.
, and
Guizani
,
M.
,
2022
, “
Industrial Digital Twins at the Nexus of NextG Wireless Networks and Computational Intelligence: A Survey
,”
J. Netw. Comput. Appl.
,
200
(
2021
), p.
103309
.
15.
Liu
,
Q.
,
Leng
,
J.
,
Yan
,
D.
,
Zhang
,
D.
,
Wei
,
L.
,
Yu
,
A.
,
Zhao
,
R.
,
Zhang
,
H.
, and
Chen
,
X.
,
2021
, “
Digital Twin-Based Designing of the Configuration, Motion, Control, and Optimization Model of a Flow-Type Smart Manufacturing System
,”
J. Manuf. Syst.
58
(
PB
), pp.
52
64
.
16.
Zhi
,
J.
,
Cao
,
Y.
,
Li
,
T.
,
Liu
,
F.
,
Luo
,
J.
,
Li
,
Y.
, and
Jiang
,
X.
,
2024
, “
A Digital Twin-Based Method for Assembly Deviations Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
24
(
9
), p.
091004
.
17.
Yujun
,
L.
,
Zhichang
,
Z.
,
Wei
,
W.
, and
Kui
,
Z.
,
2021
, “
Digital Twin Product Lifecycle System Dedicated to the Constant Velocity Joint
,”
Comput. Electr. Eng.
,
93
(
6
), p.
107264
.
18.
Moghadam
,
F. K.
,
Rebouças
,
G. F. S.
, and
Nejad
,
A. R.
,
2021
, “
Digital Twin Modeling for Predictive Maintenance of Gearboxes in Floating Offshore Wind Turbine Drivetrains
,”
Forsch. im Ingenieurwesen/Eng. Res.
,
85
(
2
), pp.
273
286
.
19.
Elayan
,
H.
,
Aloqaily
,
M.
, and
Guizani
,
M.
,
2021
, “
Digital Twin for Intelligent Context-Aware IoT Healthcare Systems
,”
IEEE Internet Things J.
,
8
(
23
), pp.
16749
16757
.
20.
Cai
,
H.
,
Zhu
,
J.
, and
Zhang
,
W.
,
2021
, “
Quality Deviation Control for Aircraft Using Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031008
.
21.
He
,
B.
,
Li
,
T.
, and
Xiao
,
J.
,
2021
, “
Digital Twin-Driven Controller Tuning Method for Dynamics
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031010
.
22.
Lu
,
Y.
,
Shevtshenko
,
E.
, and
Wang
,
Y.
,
2021
, “
Physics-Based Compressive Sensing to Enable Digital Twins of Additive Manufacturing Processes
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031009
.
23.
Qian
,
W.
,
Guo
,
Y.
,
Cui
,
K.
,
Wu
,
P.
,
Fang
,
W.
, and
Liu
,
D.
,
2021
, “
Multidimensional Data Modeling and Model Validation for Digital Twin Workshop
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031005
.
24.
Wang
,
J.
,
Ye
,
L.
,
Gao
,
R. X.
,
Li
,
C.
, and
Zhang
,
L.
,
2019
, “
Digital Twin for Rotating Machinery Fault Diagnosis in Smart Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3920
3934
.
25.
Karkaria
,
V.
,
Chen
,
J.
,
Luey
,
C.
,
Siuta
,
C.
,
Lim
,
D.
,
Radulescu
,
R.
, and
Chen
,
W.
,
2024
, “
A Digital Twin Framework Utilizing Machine Learning for Robust Predictive Maintenance: Enhancing Tire Health Monitoring
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
, pp.
1
21
.
26.
Salunkhe
,
V. G.
, and
Desavale
,
R. G.
,
2021
, “
An Intelligent Prediction for Detecting Bearing Vibration Characteristics Using a Machine Learning Model
,”
ASME J. Nondestructive Eval. Diagn. Prognostics Eng. Syst.
,
4
(
3
), p.
031004
.
27.
Alves
,
D. S.
,
Daniel
,
G. B.
,
de Castro
,
H. F.
,
Machado
,
T. H.
,
Cavalca
,
K. L.
,
Gecgel
,
O.
,
Dias
,
J. P.
, and
Ekwaro-Osire
,
S.
,
2020
, “
Uncertainty Quantification in Deep Convolutional Neural Network Diagnostics of Journal Bearings With Ovalization Fault
,”
Mech. Mach. Theory
,
149
, p.
103835
.
28.
Jeong
,
H.
,
Park
,
S.
,
Woo
,
S.
, and
Lee
,
S.
,
2016
, “
Rotating Machinery Diagnostics Using Deep Learning on Orbit Plot Images
,”
Proc. Manuf.
,
5
, pp.
1107
1118
.
29.
Kalkat
,
M.
,
Yıldırım
,
S.
, and
Uzmay
,
I.
,
2003
, “
Rotor Dynamics Analysis of Rotating Machine Systems Using Artificial Neural Networks
,”
Int. J. Rotat. Mach.
,
9
(
4
), pp.
255
262
.
30.
Jablon
,
L. S.
,
Avila
,
S. L.
,
Borba
,
B.
,
Mourão
,
G. L.
,
Freitas
,
F. L.
, and
Penz
,
C. A.
,
2021
, “
Diagnosis of Rotating Machine Unbalance Using Machine Learning Algorithms on Vibration Orbital Features
,”
J. Vib. Control
,
27
(
3–4
), pp.
468
476
.
31.
Fahim
,
M.
,
Sharma
,
V.
,
Cao
,
T.-V.
,
Canberk
,
B.
, and
Duong
,
T. Q.
,
2022
, “
Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines
,”
IEEE Access
,
10
, pp.
14184
14194
.
32.
He
,
B.
,
Liu
,
L.
, and
Zhang
,
D.
,
2021
, “
Digital Twin-Driven Remaining Useful Life Prediction for Gear Performance Degradation: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
030801
.
33.
Yiping
,
G.
,
Xinyu
,
L.
, and
Gao
,
L.
,
2021
, “
A Deep Lifelong Learning Method for Digital Twin-Driven Defect Recognition With Novel Classes
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031004
.
34.
Feng
,
Y.
,
Li
,
M.
,
Lou
,
S.
,
Zheng
,
H.
,
Gao
,
Y.
, and
Tan
,
J.
,
2021
, “
A Digital Twin-Driven Method for Product Performance Evaluation Based on Intelligent Psycho-physiological Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031002
.
35.
Zonta
,
T.
,
da Costa
,
C. A.
,
da Rosa Righi
,
R.
,
de Lima
,
M. J.
,
da Trindade
,
E. S.
, and
Li
,
G. P.
,
2020
, “
Predictive Maintenance in the Industry 4.0: A Systematic Literature Review
,”
Comput. Ind. Eng.
,
150
(
10
), p.
106889
.
36.
Shamayleh
,
A.
,
Awad
,
M.
, and
Farhat
,
J.
,
2020
, “
IoT Based Predictive Maintenance Management of Medical Equipment
,”
J. Med. Syst.
,
44
(
4
).
37.
Aivaliotis
,
P.
,
Georgoulias
,
K.
, and
Chryssolouris
,
G.
,
2019
, “
The Use of Digital Twin for Predictive Maintenance in Manufacturing
,”
Int. J. Comput. Integr. Manuf.
,
32
(
11
), pp.
1067
1080
.
38.
Chen
,
C.
,
Liu
,
Y.
,
Sun
,
X.
,
Di Cairano-Gilfedder
,
C.
, and
Titmus
,
S.
,
2019
, “
Automobile Maintenance Prediction Using Deep Learning With GIS Data
,”
Proc. CIRP
,
81
, pp.
447
452
.
39.
Burnaev
,
E. V.
,
2019
, “
On Construction of Early Warning Systems for Predictive Maintenance in Aerospace Industry
,”
J. Commun. Technol. Electron.
,
64
(
12
), pp.
1473
1484
.
40.
Zhang
,
X.
,
Liu
,
L.
,
Wan
,
X.
, and
Feng
,
B.
,
2021
, “
Tool Wear Online Monitoring Method Based on DT and SSAE-PHMM
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
034501
.
41.
Guo
,
J.
,
Yang
,
Z.
,
Chen
,
C.
,
Luo
,
W.
, and
Hu
,
W.
,
2021
, “
Real-Time Prediction of Remaining Useful Life and Preventive Maintenance Strategy Based on Digital Twin
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031003
.
42.
Yu
,
W.
,
Dillon
,
T.
,
Mostafa
,
F.
,
Rahayu
,
W.
, and
Liu
,
Y.
,
2020
, “
A Global Manufacturing Big Data Ecosystem for Fault Detection in Predictive Maintenance
,”
IEEE Trans. Ind. Inform.
,
16
(
1
), pp.
183
192
.
43.
Jimenez
,
V. J.
,
Bouhmala
,
N.
, and
Gausdal
,
A. H.
,
2020
, “
Developing a Predictive Maintenance Model for Vessel Machinery
,”
J. Ocean Eng. Sci.
,
5
(
4
), pp.
358
386
.
44.
Able
,
C. M.
,
Baydush
,
A. H.
,
Nguyen
,
C.
,
Gersh
,
J.
,
Ndlovu
,
A.
,
Rebo
,
I.
,
Booth
,
J.
,
Perez
,
M.
,
Sintay
,
B.
, and
Munley
,
M. T.
,
2016
, “
A Model for Preemptive Maintenance of Medical Linear Accelerators-Predictive Maintenance
,”
Radiat. Oncol.
,
11
(
1
), pp.
1
9
.
45.
Dangut
,
M. D.
,
Jennions
,
I. K.
,
King
,
S.
, and
Skaf
,
Z.
,
2023
, “
A Rare Failure Detection Model for Aircraft Predictive Maintenance Using a Deep Hybrid Learning Approach
,”
Neural Comput. Appl.
,
35
(
4
), pp.
2991
3009
.
46.
Speicher
,
M.
,
Hall
,
B. D.
, and
Nebeling
,
M.
,
2019
, “
What Is Mixed Reality?
Computer Human Interaction (CHI)
,
Glasgow, Scotland, UK
.
47.
Gavish
,
N.
,
Gutiérrez
,
T.
,
Webel
,
S.
,
Rodríguez
,
J.
,
Peveri
,
M.
,
Bockholt
,
U.
, and
Tecchia
,
F.
,
2015
, “
Evaluating Virtual Reality and Augmented Reality Training for Industrial Maintenance and Assembly Tasks
,”
Interact. Learn. Environ.
,
23
(
6
), pp.
778
798
.
48.
Palmarini
,
R.
,
Erkoyuncu
,
J. A.
,
Roy
,
R.
, and
Torabmostaedi
,
H.
,
2018
, “
A Systematic Review of Augmented Reality Applications in Maintenance
,”
Rob. Comput. Integr. Manuf.
,
49
, pp.
215
228
.
49.
Shyr
,
W. J.
,
Tsai
,
C. J.
,
Lin
,
C. M.
, and
Liau
,
H. M.
,
2022
, “
Development and Assessment of Augmented Reality Technology for Using in an Equipment Maintenance and Diagnostic System
,”
Sustainability (Switzerland)
,
14
(
19
).
50.
Zheltov
,
A. S.
,
Kuzmin
,
N. V.
, and
Khriukin
,
D. S.
,
2019
, “
Augmented Reality Technologies in Diagnosis of Electrical Machines
,”
International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)
,
Sochi, Russia
, Mar. 25–29, pp.
1
5
.
51.
Rajan
,
V.
,
Sobhana
,
N. V.
, and
Jayakrishnan
,
R.
,
2018
, “
Second International Conference on Intelligent Computing and Control Systems (ICICCS)
,”
International Conference on Intelligent Computing and Control Systems (ICICCS)
,
Madurai, India
,
June 14–15
, pp.
910
914
.
52.
Stacchio
,
L.
,
Angeli
,
A.
, and
Marfia
,
G.
,
2022
, “
Empowering Digital Twins With EXtended Reality Collaborations
,”
Virtual Real. Intell. Hard.
,
4
(
6
), pp.
487
505
.
53.
Yang
,
C.
,
Tu
,
X.
,
Autiosalo
,
J.
,
Ala-Laurinaho
,
R.
,
Mattila
,
J.
,
Salminen
,
P.
, and
Tammi
,
K.
,
2022
, “
Extended Reality Application Framework for a Digital-Twin-Based Smart Crane
,”
Appl. Sci. (Switzerland)
,
12
(
12
).
54.
Lalik
,
K.
, and
Wa¸torek
,
F.
,
2021
, “
Predictive Maintenance Neural Control Algorithm for Defect Detection of the Power Plants Rotating Machines Using Augmented Reality Goggles
,”
Energies
,
14
(
22
).
You do not currently have access to this content.