The widespread availability of affordable high-performance personal computers and commercial software has prompted the integration of structural analyses with numerical optimization, reducing the need for design iterations by human designers. Despite its acceptance as a design tool, however, structural optimization seems yet to gain mainstream popularity in industry. To remedy this situation, this paper reviews past literatures on structural optimization with emphasis on their relation to mechanical product development, and discusses open research issues that would further enhance the industry acceptance of structural optimization. The past literatures are categorized based on their major research focuses: geometry parameterization, approximation methods, optimization algorithms, and the integration with nonstructural issues. Open problems in each category and anticipated future trends briefly are discussed.

1.
Papalambros
,
P.
, 1995, “
Optimal Design of Mechanical Components and Systems
,”
J. Mech. Des.
1050-0472,
117B
, pp.
55
62
.
2.
Venkataraman
,
S.
, and
Haftka
,
R. T.
, 2004, “
Structural Optimization Complexity: What has Moore’s Law Done for Us?
Struct. Multidiscip. Optim.
1615-147X,
28
(
6
), pp.
375
387
.
3.
Bennet
,
J. A.
, and
Botkin
,
M. E.
,
, 1986,
The Optimimum Shape: Automated Structural Design
,
General Motors Research Laboratory Symposia Series
,
Plenum Press
, New York.
4.
Papalambros
,
P. Y.
, and
Wilde
,
D. J.
, 2000,
Principles of Optimal Design: Modeling and Computation
, 2nd ed.,
Cambridge University Press
, Cambridge, UK.
5.
Chapman
,
C.
,
Saitou
,
K.
, and
Jakiela
,
M.
, 1993, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,” in
Proceeding of the ASME Design Automation Conference: Advances in Design Automation
, DE-vol.
65
(
1
),
ASME
, New York, pp.
485
498
.
6.
Structural and Multidisciplinary Optimization
, Special issue on approximations in optimization,
27
(
5
), July 2004.
7.
Chen
,
S.
, and
Tortorelli
,
D.
, 1997, “
Three-Dimensional Shape Optimization With Variational Geometry
,”
Struct. Optim.
0934-4373,
13
(
2-3
), pp.
81
94
.
8.
Haftka
,
R. T.
, and
Grandhi
,
R. V.
, 1986, “
Structural Shape Optimization: A Survey
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
57
(
1
), pp.
91
106
.
9.
Bhavikatti
,
S. S.
, and
Ramakrishnan
,
C. V.
, 1977, “
Optimum Design of Fillets in Flat and Round Tension Bars
,” in
Proceedings of the ASME 1977 Design Engineering Technical Conference
, Chicago, Illinois, 77-DET-45.
10.
Pedersen
,
P.
, and
Laursen
,
C. L.
, 1983, “
Design for Ninimum Stress Concentration by Finite Elements and Linear Programming
,”
J. Struct. Mech.
0360-1218,
10
(
4
), pp.
375
391
.
11.
Prasad
,
B.
, and
Emerson
,
J. F.
, 1984, “
Optimal Structural Remodeling of Multi-Objective Systems
,”
Comput. Struct.
0045-7949,
18
(
4
), pp.
619
628
.
12.
Kristensen
,
E. S.
, and
Madsen
,
N. F.
, 1976, “
On the Optimum Shape of Fillets in Plates Subject to Multiple In-Plaine Loading Cases
,”
Int. J. Numer. Methods Eng.
0029-5981,
10
(
5
), pp.
1007
1009
.
13.
Dems
,
K.
, 1980, “
Multiparameter Shape Optimization of Elastic Bars in Torsion
,”
Int. J. Numer. Methods Eng.
0029-5981,
15
(
10
), pp.
1517
1539
.
14.
Bennett
,
J. A.
, and
Botkin
,
M. E.
, 1985, “
Structural Shape Optimization With Geometric Description and Adaptive Mesh Refinement
,”
AIAA J.
0001-1452,
23
(
3
), pp.
458
464
.
15.
Briabant
,
V.
, and
Fluery
,
C.
, 1984, “
Shape Optimum Design Using B-Splines
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
44
(
3
), pp.
247
267
.
16.
Imam
,
M. H.
, 1982, “
Three-Dimensional Shape Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
18
(
5
), pp.
661
673
.
17.
Briabant
,
V.
, and
Fluery
,
C.
, 1985, “
An Approximation Concepts Approach to Shape Optimal Design of Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
53
(
2
), pp.
119
148
.
18.
Altair Engineering, Inc. www.altair.comwww.altair.com
19.
Belegundu
,
A. D.
, and
Rajan
,
S. D.
, 1988, “
A Shape Optimization Approach Based on Natural Design Variables and Shape Functions
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
66
(
1
), pp.
87
106
.
20.
MSC Software Corporation. www.mscsoftware.comwww.mscsoftware.com
21.
Vanderplaats Research and Development, Inc. www.vrand.comwww.vrand.com
22.
23.
Azegami
,
H.
,
Shimoda
,
M.
,
Katamine
,
E.
, and
Wu
,
Z. C.
, 1995, “
A Domain Optimization Technique for Elliptic Boundary Value Problems
,”
Computer Aided Optimization Design of Structures IV, Structural Optimization
,
Hernandez
,
S.
,
El-Sayed
,
M.
, and
Brebbia
,
C. A.
, eds.,
Computational Mechanics Publications
, Southampton, pp.
51
58
.
24.
Inzarulfaisham
,
A. R.
, and
Azegami
,
H.
, 2004, “
Solution to Boundary Shape Optimization Problem of Linear Elastic Continua With Prescribed Natural Vibration Mode Shapes
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
3
), pp.
210
217
.
25.
Kawabe
,
Y.
,
Yoshida
,
S.
,
Saegusa
,
S.
,
Kajiwara
,
I.
, and
Nagamatsu
,
A.
, 1999, “
Optimization for Vibration Problems; Junction Layout of Combined Structure Under Oscillation
,”
J. Mech. Des.
1050-0472,
121
(
2
), pp.
188
194
.
26.
Inoue
,
K.
,
Yamanaka
,
M.
, and
Kihara
,
M.
, 2002, “
Optimum Stiffener Layout for the Reduction of Vibration and Noise of Gearbox Housing
,”
J. Mech. Des.
1050-0472,
124
(
3
), pp.
518
523
.
27.
Sobieszczanski-Sobieski
,
J.
,
Kodiyalam
,
S.
, and
Yang
,
R. Y.
, 2001, “
Optimization of Car Body Under Constraints of Noise, Vibration, and Harshness (NVH), and Crash
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
4
), pp.
295
306
.
28.
Yang
,
R. J.
,
Tho
,
C. H.
,
Wu
,
C. C.
,
Johnson
,
D.
, and
Cheng
,
J.
, 1999, “
A numerical study of crash optimization
,” in
Proceedings of the ASME 1999 Design Engineering and Technical Conferences
, September 12–15,
Las Vegas
, Nevada, DETC99/DAC-8590.
29.
Shi
,
Q.
Hagiwara
,
I.
, and
Takashima
,
F.
, 1999, “
The Most Probable Optimal Design Method for Global Optimization
,” in
Proceedings of the ASME 1999 Design Engineering and Technical Conferences
, September 12–15,
Las Vegas
, Nevada, DETC99/DAC-8635.
30.
Yang
,
R. J.
,
Gu
,
L.
,
Liaw
,
L.
,
Gearhart
,
C.
,
Tho
,
C. H.
,
Liu
,
X.
, and
Wang
,
B. P.
, 2000, “
Approximations for Safety Optimization of Large Systems
,” in
Proceedings of the ASME 2000 Design Engineering and Technical Conferences
, September 10–13,
Baltimore
, Maryland, DETC2000/DAC-14245.
31.
Yang
,
R. J.
,
Wang
,
N.
,
Tho
,
C. H.
,
Bobineau
,
J. P.
, and
Wang
,
B. P.
, 2001, “
Metamodeling Development for Vehicle Frontal Impact Simulation
,” in
Proceedings of the ASME 2001 Design Engineering and Technical Conferences
, September 9–12,
Pittsburgh
, PA, DETC2001/DAC-21012.
32.
Redhe
,
M.
, and
Nilsson
,
L.
, 2002, “
Using Space Mapping and Surrogate Models to Optimize Vehicle Crashworthiness Design
,” in
Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, September 4–6,
Atlanta
, Georgia, AIAA Paper Number: AIAA-200-2-5536.
33.
Han
,
J.
, and
Yamada
,
K.
, 2000, “
Maximization of the Crushing Energy Absorption of the S-Shaped Thin-Walled Square Tube
,” in
Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, September 6–8,
Long Beach
, CA, AIAA Paper Number: AIAA-200–0–4750.
34.
Kurtaran
,
H.
,
Omar
,
T.
, and
Eskandarian
,
A.
, 2001, “
Crashworthiness Design Optimization of Energy-Absorbing Rails for the Automotive Industry
,” in
Proceedings of the ASME 2001 International Mechanical Engineering Congress and Exposition
, November 11–16,
New York
, NY, IMECE2001/AMD-25452.
35.
Chen
,
S.
, 2001, “
An Approach for Impact Structure Optimization Using the Robust Genetic Algorithm
,”
Finite Elem. Anal. Design
0168-874X,
37
(
5
), pp.
431
446
.
36.
Mase
,
T.
,
Wang
,
J. T.
,
Mayer
,
R.
,
Bonello
,
K.
, and
Pachon
,
L.
, 1999, “
A Virtual Bumper Test Laboratory for FMVR 581
,” in
Proceedings of the ASME 1999 Design Engineering and Technical Conferences
, September 12–15,
Las Vegas
, Nevada, DETC99/DAC-8572.
37.
Yang
,
R. J.
,
Gu
,
L.
,
Tho
,
C. H.
, and
Sobieski
,
J.
, 2001, “
Multidisciplinary Optimization of a Full Vehicle With High Performance Computing
,” in
Proceedings of the American Institute of Aeronautics and Astronautics 2001 Conference
, pp.
688
698
, AIAA Paper No. AIAA-200-1-1273.
38.
Grindeanu
,
I.
,
Choi
,
K. K.
, and
Chang
,
K.-H.
, 1998, “
Shape Design Optimization Of Thermoelastic Structures for Durability
,”
J. Mech. Des.
1050-0472,
120
(
3
), pp.
491
500
.
39.
Dong
,
J.
,
Choi
,
K. K.
, and
Kim
,
N. H.
, 2004, “
Design Optimization for Structural-Acoustic Problems Using Fea-Bea With Adjoint Variable Method
,”
J. Mech. Des.
1050-0472,
126
(
3
), pp.
527
533
.
40.
Liu
,
J. S.
, and
Hollaway
,
L.
, 1998, “
Integrated Structure-Electromagnetic Optimization of Large Reflector Antenna Systems
,”
Struct. Multidiscip. Optim.
1615-147X,
16
(
1
), pp.
29
36
.
41.
Lund
,
E.
,
Møller
,
H.
, and
Jakobsen
,
L. A.
, 2003, “
Shape Design Optimization of Stationary Fluid-Structure Interaction Problems With Large Displacements and Turbulence
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
5–6
), pp.
383
392
.
42.
Howell
,
L. L.
,
Rao
,
S. S.
, and
Midha
,
A.
, 1994, “
The Reliability-Based Optimal Design of a Bistable Compliant Mechanism
,”
J. Mech. Des.
1050-0472,
116
(
4
), pp.
1115
1121
.
43.
Parkinson
,
M. B.
,
Howell
,
L. L.
, and
Cox
,
J.
, 1997, “
A Parametric Approach to the Optimization-Based Design of Compliant Mechanisms
,” in
Proceedings of the ASME 1997 Design Engineering Technical Conferences
, DETC97/DAC-3763.
44.
Xu
,
D.
, and
Anamthasuresh
,
G. K.
, 2003, “
Freeform Skeletal Shape Optimization of Compliant Mechanism
,”
J. Mech. Des.
1050-0472,
125
(
2
), pp.
253
261
.
45.
Saitou
,
K.
,
Wang
,
D.-A.
, and
Wou
,
S. J.
, 2000, “
Externally-Resonated Linear Micro Vibromotors for Micro Assembly
,”
J. Microelectromech. Syst.
1057-7157,
9
(
3
), pp.
336
346
.
46.
Saggere
,
L.
,
Kota
,
S.
, and
Crary
,
S. B.
, 1994, “
A New Design for Suspension of Linear Microactuators
,” in
Proceedings of the ASME 1994 Winter Annual Meeting
, DSC
55
(
2
), pp.
671
675
.
47.
Cho
,
Y. H.
, and
Pisano
,
A. P.
, 1990, “
Optimum Structural Design of Micromechanical Crab-Leg Flexures With Microfabrication Constraints
,” in
Proceedings of the ASME 1990 Winter Annual Meeting
, DSC
19
, pp.
31
49
.
48.
Ye
,
W.
,
Mukherjee
,
S.
, and
MacDonald
,
N. C.
, 1998, “
Optimal Shape Design of an Electrostatic Comb Drive in Microelectormechanical Systems
,”
J. Microelectromech. Syst.
1057-7157,
7
(
1
), pp.
16
26
.
49.
Jensen
,
B. D.
,
Mutlu
,
S.
,
Miller
,
S.
,
Kurabayashi
,
K.
, and
Allen
,
J. J.
, 2003, “
Shaped Comb Fingers for Compensation of Mechanical Eestoring Force in Tunable Resonators
,”
J. Microelectromech. Syst.
1057-7157,
12
(
3
), pp.
373
383
.
50.
Tu
,
J.
,
Choi
,
K. K.
, and
Park
,
Y. H.
, 1999, “
A New Study on Reliability-Based Design Optimization
,”
J. Mech. Des.
1050-0472,
121
(
4
), pp.
557
564
.
51.
Murotsu
,
Y.
,
Shao
,
S.
,
Kogiso
,
N.
, and
Tomioka
,
H.
, 1996, “
Optimal Shape of Truss Structure Based on Reliability
,”
Advances in Structural Optimization
,
Frangopol
,
D. M.
, and
Cheng
,
F. Y.
, eds.,
American Society of Civil Engineers
, pp.
145
156
.
52.
Youn
,
B. D.
, and
Choi
,
K. K.
, 2003, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
J. Mech. Des.
1050-0472,
125
(
2
), pp.
221
232
.
53.
Chen
,
X.
,
Hasselman
,
T. K.
, and
Neill
,
D. J.
, 1997, “
Reliability Based Structural Design Optimization for Practical Applications
,” in
Proceedings of the 38th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit
, AIAA-97-1403.
54.
Papalambros
,
P. Y.
, and
Shea
,
K.
, 2001, “
Creating Structural Configurations
,”
Formal Synthesis Methods
,
Cagan
,
J.
, and
Antonsson
,
E.
, eds.,
Cambridge University Press
, New York, pp.
93
125
.
55.
Michell
,
A. G. M.
, 1904, “
The Limit of Economy of Material in Frame Structures
,”
Philos. Mag.
0031-8086,
8
(
6
), pp.
589
597
.
56.
Bendsøe
,
M. P.
,
Ben-Tal
,
A.
, and
Zowe
,
J.
, 1994, “
Optimization Methods for Truss Geometry and Topology Design
,”
Struct. Optim.
0934-4373,
7
, pp.
141
159
.
57.
Kirsch
,
U.
, 1989, “
Optimal Topologies of Structures
,”
Appl. Mech. Rev.
0003-6900,
42
(
8
), pp.
223
238
.
58.
Rozvany
,
G. I. N.
,
Bendsøe
,
M. P.
, and
Kirsch.
,
U.
, 1995, “
Layout Optimization of Structures
,”
Appl. Mech. Rev.
0003-6900,
48
, pp.
41
119
.
59.
Gil
,
L.
, and
Andreu
,
A.
, 2001, “
Shape and Cross-Section Optimisation of a Truss Structure
,”
Comput. Struct.
0045-7949,
79
, pp.
681
689
.
60.
Pedersen
,
N. L.
, and
Nielsen
,
A. K.
, 2003, “
Optimization of Practical Trusses With Constraints on Eigenfrequencies, Displacements, Stresses, and Buckling
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
5–6
), pp.
436
445
.
61.
Nishigaki
,
H.
,
Nishiwaki
,
S.
,
Amago
,
T.
,
Yoshio
,
K.
, and
Kikuchi
,
N.
, 2001, “
First Order Analysis—New Cae Tools for Automotive Body Designers
,” SAE Technical Paper No. 2001-01-0768, Society of Automotive Engineers, Pennsylvania.
62.
Fredricson
,
H.
,
Johansen
,
T.
,
Klarbring
,
A.
, and
Petersson
,
J.
, 2003, “
Topology Optimization of Frame Structures With Flexible Joints
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
3
), pp.
199
214
.
63.
Takezawa
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
, 2003, “
Structural Topology Optimization Using Function-Oriented Elements Based on the Concept of First Order Analysis
,” in
Proceedings of the ASME 2003 Design Engineering and Technical Conferences
, September 2–6,
Chicago
, Illinois, DETC2003/DAC-48773.
64.
Takezawa
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
,
Yoshimura
,
M.
,
Nishigaki
,
H.
, and
Tsurumi
,
Y.
, 2005, “
Concurrent Design and Evaluation Based on Structural Optimization Using Structural and Function-Oriented Elements at the Conceptual Design Phase
,”
Concurr. Eng. Res. Appl.
1063-293X,
12
(
1
), pp.
29
42
.
65.
Takezawa
,
A.
,
Nishiwaki
,
S.
,
Izui
,
K.
, and
Yoshimura
,
M.
, 2004, “
A Method for Determining the Optimal Direction of the Principal Moment of Inertia in Frame Element Cross-Sections
,” in
Proceedings of the ASME 2004 Design Engineering and Technical Conferences
, September 28–October 2, 2004,
Salt Lake City
, Utah, DETC2004-57369.
66.
Duda
,
J. W.
, and
Jakiela
,
M. J.
, 1997, “
Generation and Classification of Structural Topologies With Genetic Algorithm Speciation
,”
J. Mech. Des.
1050-0472,
119
(
1
), pp.
127
130
.
67.
Chapman
,
C.
,
Saitou
,
K.
, and
Jakiela
,
M.
, 1994, “
Genetic Algorithms as an Approach to Configuration and Topology Design
,”
J. Mech. Des.
1050-0472,
116
(
4
), pp.
1005
1012
.
68.
Jakiela
,
M.
,
Chapman
,
C.
,
Duda
,
J.
,
Adewuya
,
A.
, and
Saitou
,
K.
, 2000, “
Continuum Structural Topology Design With Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
(
2
), pp.
339
356
.
69.
Xie
,
Y. M.
, and
Steven
,
G. P.
, 1997,
Evolutionary Structural Optimization
,
Springer
, London.
70.
Harasaki
,
H.
, and
Arora
,
J. S.
, 2001, “
A New Class of Evolutionary Methods Based on the Concept of Transferred Force for Structural Design
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
1
), pp.
35
56
.
71.
Kita
,
E.
, and
Toyoda
,
T.
, 2000, “
Structural Design Using Cellular Automata
,”
Struct. Multidiscip. Optim.
1615-147X,
19
, pp.
64
73
.
72.
Hajela
,
P.
, and
Kim
,
B.
, 2001, “
On the Use of Energy Minimization for CA Based Analysis in Elasticity
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
1
), pp.
24
33
.
73.
Abdalla
,
M. M.
, and
Gürdal
,
Z.
, 2004, “
Structural Design Using Cellular Automata for Eigenvalue Problems
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3-4
), pp.
200
208
.
74.
Missoum
,
S.
,
Gürdal
,
Z.
, and
Setoodeh
,
S.
, 2005, “
Study of a New Local Update Scheme for Cellular Automata in Structural Design
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
2
), pp.
103
112
.
75.
Liu
,
J.-S.
,
Parks
,
G. T.
, and
Clarkson
,
P. J.
, 2002, “
Optimization of Turbine Disk Profiles by Metamorphic Development
,”
J. Mech. Des.
1050-0472,
124
(
2
), pp.
192
200
.
76.
Liu
,
J.-S.
,
Parks
,
G. T.
, and
Clarkson
,
P. J.
, 2005, “
Topology/Shape Optmisation of Axisymmetric Continuum Structures—A Metamorphic Development Approach
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
1
), pp.
73
83
.
77.
Cagan
,
J.
, and
Mitchell
,
W. J.
, 1993, “
Proceedings of the Fifth International Conference (V-ICCCBE)
,” Anaheim, California, June 7–9, pp.
1642
1646
.
78.
Reddy
,
G. M.
, and
Cagan
,
J.
, 1995, “
Optimally Directed Truss Topology Generation Using Shape Annealing
,”
J. Mech. Des.
1050-0472,
117
(
1
), pp.
206
209
.
79.
Shea
,
K.
,
Cagan
,
J.
, and
Fenves
,
S. J.
, 1997, “
A Shape Annealing Approach to Optimal Truss Design With Dynamic Grouping of Members
,”
J. Mech. Des.
1050-0472,
119
(
3
), pp.
388
394
.
80.
Suppapitnarm
,
A.
,
Parks
,
G. T.
,
Shea
,
K.
, and
Clarkson
,
P. J.
, 2004, “
Conceptual Design of Bicycle Frames by Multiobjective Shape Annealing
,”
Eng. Optimiz.
0305-215X,
36
(
2
), pp.
165
188
.
81.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
, 1988, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
71
(
2
), pp.
197
224
.
82.
Bendsøe
,
M. P.
, 1989, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
0934-4373,
1
, pp.
193
202
.
83.
Rozvany
,
G. I. N.
,
Zhou
,
N.
, and
Sigmund
,
O.
, 1994, “
Topology Optimization in Structural Design
,” in
Advances in Design Optimization
,
Adeli
, ed.,
Chapman and Hall
, London, pp.
340
299
.
84.
Yang
,
R. J.
, and
Chahande
,
A. I.
, 1995, “
Automotive Applications of Topology Optimization
,”
Struct. Optim.
0934-4373,
9
(
3-4
), pp.
245
249
.
85.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 1999, “
Maretrial Interpolation Schemes in Topology Optimization
,”
Arch. Appl. Mech.
0939-1533,
69
, pp.
635
654
.
86.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
, 2002,
Topology Optimziation: Theory, Methods, and Applications
,
Springer
, Berlin, Germany, ISBN-3540429921.
87.
Rozavany
,
G. I. N.
, 2001, “
Aims, Scope, Methods, History and Unified Terminology of Computer-Aided Topology Optimization in Structural Mechanics
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
2
), pp.
90
108
.
88.
Suzuki
,
K.
, and
Kikuchi
,
N.
, 1991, “
A Homogenization Method for Shape and Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
93
, pp.
291
318
.
89.
Diaz
,
A. R.
, and
Kikuchi
,
N.
, 1992, “
Solutions to Shape and Topology Eigenvalue Optimization Using a Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
487
1502
.
90.
Ma
,
Z.-D.
,
Kikuchi
,
N.
, and
Cheng
,
H.-C.
, 1995, “
Topological Design for Vibrating Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
121
(
1–4
), pp.
259
280
.
91.
Pedersen
,
N. L.
, 2000, “
Maximization of Eigenvalues Using Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
1
), pp.
2
11
.
92.
Mayer
,
R. R.
,
Kikuchi
,
N.
, and
Scott
,
R. A.
, 1996, “
Application of Topological Optimization Techniques to Structural Crashworthiness
,”
Int. J. Numer. Methods Eng.
0029-5981,
39
(
8
), pp.
1383
1403
.
93.
Mayer
,
R. R.
, 2001, “
Application of Topological Optimization Techniques to Automotive Structural Design
,” in
Proceedings of the ASME 2001 International Mechanical Engineering Congress and Exposition
, November 11–16,
New York
, NY, IMECE2001/AMD-25458.
94.
Luo
,
J.
,
Gea
,
H. C.
, and
Yang
,
R. J.
, 2000, “
Topology Optimization for Crush Design
,” in
Proceedings of the 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, September 6–8,
Long Beach
, CA, AIAA Paper No. AIAA-2000-4770.
95.
Mayer
,
R. R.
,
Maurer
,
D.
, and
Bottcher
,
C.
, 2000, “
Application of Topological Optimization Program to the Danner Test Simulation
,” in
Proceedings of the ASME 2000 Design Engineering and Technical Conferences
, September 10–13,
Baltimore
, Maryland, DETC2000/DAC-14292.
96.
Gea
,
H. C.
, and
Luo
,
J.
, 2001, “
Design for Energy Absorption: A Topology Optimization Approach
,” in
Proceedings of the ASME 2001 Design Engineering and Technical Conferences
, September 9–12,
Pittsburgh
, PA, DETC2001/DAC-21060.
97.
Soto
,
C. A.
, 2001, “
Optimal Structural Topology Design for Energy Absorption: A Heurtistic Approach
,” in
Proceedings of the ASME 2001 Design Engineering and Technical Conferences
, September 9–12,
Pittsburgh
, PA, DETC-2001/DAC-21126.
98.
Soto
,
C. A.
, 2001, “
Structural Topology for Crashworthiness Design by Matching Plastic Strain and Stress Levels
,” in
Proceedings of the ASME 2001 International Mechanical Engineering Congress and Exposition
, November 11–16,
New York
, NY, IMECE2001/AMD-25455.
99.
Bae
,
K.-K.
,
Wang
,
S. W.
, and
Choi
,
K. K.
, 2002, “
Reliability-Based Topology Optimization With Uncertanties
,” in
Proceedings of The Second China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems (CJK-OSM 2)
,
Busan
, Korea, Nov. 4–8, 2002, pp.
647
653
.
100.
Kharmanda
,
G.
,
Olhoff
,
N.
,
Mohamed
,
A.
, and
Lemaire
,
M.
, 2004, “
Reliability-Based Topology Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
5
), pp.
295
307
.
101.
Bremicker
,
M.
,
Chirehdast
,
M.
,
Kikuchi
,
M.
, and
Papalambros
,
P. Y.
, 1991, “
Integrated Topology and Shape Optimization in Structural Design
,”
Mech. Struct. Mach.
0890-5452,
19
(
4
), pp.
551
587
.
102.
Midha
,
A.
,
Norton
,
T. W.
, and
Howell
,
L. L.
, 1994, “
On the Nomenclature, Classification, and Abstractions of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
116
(
1
), pp.
270
279
.
103.
Frecker
,
M. I.
,
Ananthasuresh
,
G. K.
,
Nishiwaki
,
S.
,
Kikuchi
,
N.
, and
Kota
,
S.
, 1997, “
Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization
,”
J. Mech. Des.
1050-0472,
119
(
2
), pp.
238
245
.
104.
Hetrick
,
J. A.
, and
Kota
,
S.
, 1999, “
An Energy Formulation for Parametric Size and Shape Optimization of Compliant Mechanisms
,”
J. Mech. Des.
1050-0472,
121
(
2
), pp.
229
234
.
105.
Saxena
,
A.
, and
Ananthasuresh
,
G. K.
, 2001, “
Topology Synthesis of Compliant Mechanisms for Nonlinear Force-Deflection and Curved Path Specifications
,”
J. Mech. Des.
1050-0472,
123
(
1
), pp.
33
42
.
106.
Sigmund
,
O.
, 1997, “
On the Design of Compliant Mechanisms Using Topology Optimization
,”
Mech. Struct. Mach.
0890-5452,
25
(
4
), pp.
495
526
.
107.
Nishiwaki
,
S.
,
Frecker
,
M. I.
,
Min
,
S.
, and
Kikuchi
,
N.
, 1998, “
Topology Optimization of Compliant Mechanisms Using the Homogenization Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
42
(
3
), pp.
535
559
.
108.
Nishiwaki
,
S.
,
Min
,
S.
,
Yoo
,
J.
, and
Kikuchi
,
N.
, 2001, “
Optimal Structural Design Considering Flexibility
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
34
), pp.
4457
4504
.
109.
Bruns
,
T. E.
, and
Tortorelli
,
D. A.
, 2001, “
Topology Optimization of Non-Linear Structures and Compliant Mechanisms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
26-27
), pp.
3443
3459
.
110.
Pedersen
,
C. B. W.
,
Buhl
,
T.
, and
Sigmund
,
O.
, 2001, “
Topology Synthesis of Large-Displacement Compliant Mechanisms
,”
Int. J. Numer. Methods Eng.
0029-5981,
50
(
12
), pp.
2683
2705
.
111.
Bruns
,
T. E.
, and
Sigmund
,
O.
, 2004, “
Toward the Topology Design of Mechanisms that Exhibit Snap-Through Behavior
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
36–38
), pp.
3973
4000
.
112.
Tai
,
K.
, and
Chee
,
T. H.
, 2000, “
Design of Structures and Compliant Mechanisms by Evolutionary Optimization of Morphological Representations of Topology
,”
J. Mech. Des.
1050-0472,
122
(
4
), pp.
560
566
.
113.
Tai
,
K.
Cui
,
G. Y.
, and
Ray
,
T.
, 2002, “
Design Synthesis of Path Generating Compliant Mechanisms by Evolutionary Optimization of Topology and Shape
,”
J. Mech. Des.
1050-0472,
124
(
3
), pp.
492
500
.
114.
Silva
,
E.
,
Nishiwaki
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topology Optimization Design of Flextensional Actuators
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
47
(
3
), pp.
657
671
.
115.
Maddisetty
,
H.
, and
Frecker
,
M.
, 2004, “
Dynamic Topology Optimization of Compliant Mechanisms and Piezoceramic Actuators
,”
J. Mech. Des.
1050-0472,
126
(
6
), pp.
975
983
.
116.
Silva
,
E. C. N.
, and
Nishiwaki
,
S.
, 2005, “
Piezoresistive Sensor Design Using Topology Optimization
,” in
Proceedings of the 12th SPIE Annual International Symposium on Smart Structures and Materials
,
San Diego
, CA, USA, 6–10, March, 2005.
117.
Li
,
Y.
,
Saitou
,
K.
, and
Kikuchi
,
N.
, 2004, “
Topology Optimization of Thermally Actuated Compliant Mechanisms Considering Time Transient Effect
,”
Finite Elem. Anal. Design
0168-874X,
40
(
11
), pp.
1317
1331
.
118.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part I: One Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49-50
), pp.
6577
6604
.
119.
Sigmund
,
O.
, 2001, “
Design of Multiphysics Actuators Using Topology Optimization—Part II: Two Material Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
(
49-50
), pp.
6605
6627
.
120.
Mankame1
,
N. D.
, and
Ananthasuresh
,
G. K.
, 2004, “
Topology Synthesis of Electrothermal Compliant Mechanisms Using Line Elements
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
3-4
), pp.
209
218
.
121.
Nishiwaki
,
S.
,
Saitou
,
K.
,
Min
,
S.
, and
Kikuchi
,
N.
, 2000, “
Topological Design Considering Flexibility Under Periodic Loads
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
1
), pp.
4
16
.
122.
Maeda
,
Y.
,
Nishiwaki
,
S.
,
Izui
,
K.
,
Yoshimura
,
M.
,
Matsui
,
K.
, and
Terada
,
K.
, 2004, “
Design of Mechanical Resonators Based on Topology Optimization Technique
,” in
Proceedings of the Third China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, October 30-November 2, 2004
,
Kanazawa
, Japan, pp.
753
758
.
123.
Pedersen
,
N. L.
, 2004, “
On Optimization of Bio-Probes
,”
Int. J. Numer. Methods Eng.
0029-5981,
61
(
6
), pp.
791
806
.
124.
Sethian
,
J. A.
, and
Wiegmann
,
A.
, 2000, “
Structural Boundary Design Via Level Set and Immersed Interface Methods
,”
J. Comput. Phys.
0021-9991,
163
(
2
), pp.
489
528
.
125.
Wang
,
M. Y.
,
Wang
,
X. M.
, and
Guo
,
D. M.
, 2003, “
A Level Set Method for Structural Topology Optimization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
1-2
), pp.
227
246
.
126.
Wang
,
X.
,
Wang
,
M. Y.
, and
Guo
,
D.
, 2004, “
Structural Shape and Topology Optimization in a Level-Set-Based Framework of Region Representation
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
1-2
), pp.
1
19
.
127.
Sethian
,
J. A.
, 1999,
Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
,
Cambridge University Press
, Cambridge, United Kingdom.
128.
Kumar
,
A. V.
, and
Lee
,
J.
, 1994, “
Boolean Algebra and Analysis Using Approximate Step Functions
,” in
Proceedings of the ASME 1994 Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City
, Utah, September 28-October 2, DETC2004-57700.
129.
Stander
,
N.
,
Roux
,
W.
,
Pattabiraman
,
S.
, and
Dhulipudi
,
R.
, 1999, “
Response Surface Approximations for Design Optimization Problems in Nonlinear Dynamics
,” in
Proceedings of the 1999 ASME Pressure Vessels and Piping Conference
,
Boston
, Massachusetts, pp.
275
284
.
130.
Marklund
,
P. O.
, and
Nilsson
,
L.
, 2001, “
Optimization of a Car Body Component Subjected to Side Impact
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
5
), pp.
383
392
.
131.
Redhe
,
M.
,
Forsberge
,
J.
,
Janssone
,
T.
,
Marklund
,
P.-O.
, and
Nilsson
,
L.
, 2002, “
Using the Response Surface Methodology and the D-Optimality Criterion in Crashworthiness Related Problems—An Analysis of the Surface Approximation Error Versus the Number of Function Evaluations
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
3
), pp.
185
194
.
132.
Avalle
,
M.
,
Chiandussi
,
G.
, and
Belingardi
,
G.
, 2002, “
Design Optimization by Response Surface Methodology: Application to Crashworthiness Design of Vehicle Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
4
), pp.
325
332
.
133.
Redhe
,
M.
,
Giger
,
M.
, and
Nilsson
,
L.
, 2004, “
An Investigation of Structural Optimization in Crashworthiness Design Using a Stochastic Approach: A Comparison of Stochastic Optimization and the Response Surface Methodology
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
6
), pp.
446
459
.
134.
Forsberg
,
J.
, and
Nilsson
,
L.
, 2005, “
On Polynomial Response Surfaces and Kriging for Use in Structural Optimization of Crashworthiness
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
3
), pp.
232
243
.
135.
Venter
,
G.
, and
Haftka
,
R. T.
, 1999, “
Using Response Surface Approximations in Fuzzy Set Based Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
18
(
4
), pp.
218
227
.
136.
Jin
,
R.
,
Du
,
X.
, and
Chen
,
W.
, 2003, “
The Use of Metamodeling Techniques for Optimization Under Uncertainty
,”
Struct. Multidiscip. Optim.
1615-147X, Structural and Multidisciplinary Optimization,
25
(
2
), pp.
99
116
.
137.
Cheng
,
B.
, and
Titterington
,
D. M.
, 1994, “
Neural Networks: A Review from a Statistical Perspective
,”
Stat. Sci.
0883-4237,
9
(
1
), pp.
2
54
.
138.
Sakata
,
S.
,
Ashida
,
F.
, and
Zako
,
M.
, 2003, “
Strural Optimization Using Kriging Approximation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
(
7-8
), pp.
923
939
.
139.
Mechesheimer
, 2001, Metamodeling of Combined Discrete/Continuous Responses,
AIAA J.
0001-1452,
39
(
10
), pp.
1955
1959
.
140.
Jin
,
R.
,
Chen
,
W.
, and
Simpson
,
T. W.
, 2001, “
Comparative Studies of Metamodelling Techniques Under Multiple Modelling Criteria
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
1
), pp.
1
13
.
141.
Saitou
,
K.
, 2004, “
First Order Analysis as Designer’S Model: Introductory Remarks and Overview
,” Special session on First Order Analysis (FOA), in
Proceedings of the SAE 2004 World Congress
,
Detroit
, Michigan, March 8–11.
142.
Saxena
,
A.
, and
Kramer
,
S. N.
, 1998, “
A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments
,”
J. Mech. Des.
1050-0472,
120
(
3
), pp.
392
400
.
143.
Chang
,
R. J.
, and
Wang
,
Y. L.
, 1999, “
Integration Method for Input-Output Modeling and Error Analysis of Four-Bar Polymer Compliant Micromachines
,”
J. Mech. Des.
1050-0472,
121
(
2
), pp.
220
228
.
144.
Saggere
,
L.
, and
Kota
,
S.
, 2001, “
Synthesis of Planar, Compliant Four-Bar Mechanisms for Compliant-Segment Motion Generation
,”
J. Mech. Des.
1050-0472,
123
(
4
), pp.
535
541
.
145.
Edwards
,
B. T.
,
Jensen
,
B. D.
, and
Howell
,
L. L. A.
, 2001, “
Pseudo-Rigid-Body Model for Initially-Curved Pinned-Pinned Segments Used in Compliant Mechanisms
,” Technical Brief,
J. Mech. Des.
1050-0472,
123
(
3
), pp.
464
468
.
146.
Kimball
,
C.
, and
Tsai
,
L.-W.
, 2002, “
Modeling of Flexural Beams Subjected to Arbitrary End Loads
,”
J. Mech. Des.
1050-0472,
124
(
2
), pp.
223
235
.
147.
Sugiura
,
H.
,
Nishigaki
,
H.
,
Nishiwaki
,
S.
,
Kojima
,
Y.
, and
Arima
,
M.
, 2000, “
First Order Analysis for Automotive Chassis Design—Application to Torsion Beam Suspension
,” SAE Technical Paper No. 2000-08-0097, Society of Automotive Engineers, Pennsylvania.
148.
Tsurumi
,
Y.
,
Nishigaki
,
H.
,
Nakagawa
,
T.
,
Amago
,
T.
,
Furusu
,
K.
,
Kikuchi
,
N.
, 2004, “
First Order Analysis for Automotive Body Structure Design Part 2: Joint Analysis Considering Nonlinear Behavior
,” SAE Technical Paper 2004-01-1659, Society of Automotive Engineers, Pennsylvania.
149.
Bennett
,
J. A.
,
Lust
,
R. V.
, and
Wang
,
J. T.
, 1991, “
Optimal Design Strategies in Crashworthiness and Occupant Protection
,” in
Proceedings of the ASME 1991 Winter Annual Meeting
,
Atlanta
, GA, AMD-Vol.
126
, pp.
51
66
.
150.
Chellappa
,
S.
, and
Diaz
,
A.
, 2002, “
A Multi-Resolution Reduction Scheme for Structural Design
,” in
Proceeding of the National Science Foundation Grantee’s Conference
, pp.
98
107
.
151.
Ignatovich
,
C. L.
, and
Diaz
,
A.
, 2002, “
Physical Surrogates in Design Optimization for Enhanced Crashworthiness
,” in
Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, September 4–6, Atlanta, Georgia, AIAA Paper No. AIAA-2002–5537.
152.
Nishigaki
,
H.
, and
Kikuchi
,
N.
, 2004, “
First Order Analysis of Automotive Body Structure Design Part 3: Crashworthiness Analysis Using Beam Elements
,” SAE Technical Paper No. 2004-01-1660, Society of Automotive Engineers, Pennsylvania.
153.
Hamza
,
K.
, and
Saitou
,
K.
, 2004, “
Crash Mode Analysis of Vehicle Structures Based on Equivalent Mechanism Approximations
,” in
Proceedings of the Fifth International Symposium on Tools and Methods of Competitive Engineering
, Lausanne, Switzerland, April 13–17, pp.
277
287
.
154.
Hamza
,
K.
, and
Saitou
,
K.
, 2004, “
Design for Crashworthiness of Vehicle Structures via Equivalent Mechanism Approximations
,” in
Proceedings of the ASME 2004 International Mechanical Engineering Congress and R& Expo
, Anaheim, California, November 13–19, IMECE200–4–62226.
155.
Hamza
,
K.
, and
Saitou
,
K.
, 2003, “
Design for Structural Crashworthiness Using Equivalent Mechanism Approximations
,” in
Proceedings of the 2003 ASME Design Engineering Technical Conferences
, Chicago, Illinois, September 2–6, DETC2003/DAC-48751.
156.
Abramowicz
,
W.
, 2003, “
Thin-Walled Structures as Impact Energy Absorbers
,”
Thin-Walled Struct.
0263-8231,
41
(
23
), pp.
91
107
.
157.
Takada
,
K.
, and
Abramowicz
,
W.
, 2004, “
Fast Crash Analysis of 3D Beam Structures Based on Object Oriented Formulation
,” SAE Technical Paper No. 2004-01-1728, Society of Automotive Engineers, Pennsylvania.
158.
Levy
,
R.
,
Kirsch
,
U.
, and
Liu
,
S.
, 2000, “
Reanalysis of Trusses Using Modified Initial Designs
,”
Struct. Multidiscip. Optim.
1615-147X,
19
(
2
), pp.
105
112
.
159.
Kirsch
,
U.
, and
Papalambros
,
P. Y.
, 2001, “
Structural Reanalysis for Topological Modifications—A Unified Approach
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
5
), pp.
333
344
.
160.
Kirsch
,
U.
, and
Papalambros
,
P. Y.
, 2001, “
Exact and Accurate Reanalysis of Structures for Geometrical Changes
,”
Eng. Comput.
0177-0667,
17
(
4
), pp.
363
372
.
161.
Kirsch
,
U.
, 2002,
Design-oriented analysis of structures
,
Kluwer Academic Publishers
, Dordrecht.
162.
Kirsch
,
U.
, 2003, “
A Unified Reanalysis Approach for Structural Analysis, Design, and Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
2
), pp.
67
85
.
163.
Choi
,
K. K.
, and
Chang
,
K. H.
, 1994, “
A Study on Design Velocity Filed Computation for Shape Optimal Design
,”
Finite Elem. Anal. Design
0168-874X,
15
(
4
), pp.
317
341
.
164.
Yeh
,
T. P.
, and
Vance
,
J. M.
, 1998, “
Applying Virtual Reality Techniques to Sensitivity Based Structural Shape Design
,”
J. Mech. Des.
1050-0472,
120
(
4
), pp.
612
619
.
165.
Cade
,
S. A.
, 2002, “
Mechanical Design Synthesis: New Processes for Innovative Product Development
,” White Paper, September 2002. URL: http://www.cadoe.com/WhitePaper_CADOE.pdfhttp://www.cadoe.com/WhitePaper_CADOE.pdf
166.
Yang
,
R. J.
, and
Chuand
,
C. H.
, 1994, “
Optimal Topology Design Using Linear Programming
,”
Comput. Struct.
0045-7949,
52
(
2
), pp.
265
275
.
167.
Kumar
,
A. V.
, 2000, “
A Sequential Optimization Algorithm Using Logarithmic Barriers: Applications to Structural Optimization
,”
J. Mech. Des.
1050-0472,
122
(
3
), pp.
271
277
.
168.
Herskovits
,
J.
,
Dias
,
G.
,
Santos
,
G.
, and
Mota Soares
,
C. M.
, 2000, “
Shape Structural Optimization With an Interior Point Nonlinear Programming Algorithm
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
2
), pp.
107
115
.
169.
Fleury
,
C.
,
Braibant
,
V.
, 1986, “
Structural Optimization: A New Dual Method Using Mixed Variables
,”
Int. J. Numer. Methods Eng.
0029-5981,
23
(
3
), pp.
409
428
.
170.
Svanberg
,
K.
, 1987, “
Method of Moving Asymptotes—A New Method for Structural Optimization
,”
Int. J. Numer. Methods Eng.
0029-5981,
24
(
2
), pp.
359
373
.
171.
Zhang
,
W.-H.
, and
Fleury
,
C.
, 1997, “
A Modification of Convex Approximation, Method for Structural Optimization
,”
Comput. Struct.
0045-7949,
64
(
1–4
), pp.
89
95
.
172.
Chung
,
T. T.
, and
Chiou
,
C. H.
, 2002, “
Structural Shape Optimization Using Self-Adjusted Convex Approximation
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
3
), pp.
218
224
.
173.
Bruyneel
,
M.
,
Duysinx
,
P.
, and
Fleury
,
C.
, 2002, “
A Family of MMA Approximations for Structural Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
4
), pp.
263
276
.
174.
Vanderplaats
,
G. N.
, 1973, “
Structural Optimization by Methods of Feasible Directions
,”
Comput. Struct.
0045-7949,
3
(
4
), pp.
739
755
.
175.
Kočvara
,
M.
, and
Stingl
,
M.
, 2003, “
Pennon: A Code for Convex Nonlinear and Semidefinite Programming
,”
Optim. Methods Software
1055-6788,
18
(
3
), pp.
317
333
.
176.
Ohsaki
,
M.
,
Fujisawa
,
K.
,
Katoh
,
N.
, and
Kanno
,
Y.
, 1999, “
Semi-Definite Programming for Topology Optimization of Trusses Under Multiple Eigenvalue Constraints
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
180
(
1-2
), pp.
203
217
.
177.
Kanno
,
Y.
,
Ohsaki
,
M.
, and
Katoh
,
N.
, 2001, “
Sequential Semidefinite Programming for Optimization of Framed Structures Under Multimodal Buckling Constraints
,”
Int. J. Struct. Stab. Dyn.
0219-4554,
1
(
4
), pp.
585
602
.
178.
Sobieszczanski-Sobieski
,
J.
, and
Kodiyalam
,
S.
, 2001, “
Bliss/S: A New Method for Two-Level Structural Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
1
), pp.
113
.
179.
Braun
,
R. D.
, and
Kroo
,
I. M.
, 1996, “
Development and Application of the Collaborative Optimization Architecture in a Multidisciplinary Design Environment
,”
Multidisciplinary Design Optimization: State-of-the-Art
,
Alexandrov
,
N.
and
Hussaini
,
M. Y.
, eds.,
SIAM
, New York.
180.
Rawlings
,
M. R.
, and
Balling
,
R. J.
, 1998, “
Collaborative Optimization With Disciplinary Conceptual Design
,” in
Proceedings of the 7th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, AIAA-9–8–4919.
181.
Kim
,
H. M.
,
Michelena
,
N. F.
,
Papalambros
,
P. Y.
, and
Jiang
,
T.
, 2003, “
Target Cascading in Optimal System Design
,”
J. Mech. Des.
1050-0472,
125
(
3
), pp.
474
480
.
182.
Kim
,
H. M.
,
Rideout
,
D. G.
,
Papalambros
,
P. Y.
, and
Stein
,
J. L.
, 2003, “
Analytical Target Cascading in Automotive Vehicle Design
,”
J. Mech. Des.
1050-0472,
125
(
3
), pp.
481
489
.
183.
Etman
,
L. F. P.
,
Kokkolaras
,
M.
,
Papalambros
,
P. Y.
,
Hofkamp
,
A. T.
, and
Rooda
,
J. E.
, 2002, “
Coordination Specification for Analytical Target Cascading Using the Chi Language
,” in
Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
, Work in Progress, AIAA-200–2–5637, Atlanta, Georgia, USA.
184.
Papalambros
,
P.
(ed.), 2002,
Struct. Multidiscip. Optim.
1615-147X, Special Issue on Commercial Design Optimization Software,
23
(
2
), pp.
95
96
.
185.
Belegundu
,
A. D.
, 2004, “
Parallel Line Search in Method of Feasible Directions
,”
Optim. Eng.
1389-4420,
5
(
3
), pp.
379
388
.
186.
Umesha
,
P. K.
,
Venuraju
,
M. T.
,
Hartmann
,
D.
,
Leimbach
,
K. R.
, 2005, “
Optimal Design of Truss Structures Using Parallel Computing
,”
Struct. Multidiscip. Optim.
1615-147X,
29
(
4
), pp.
285
297
.
187.
Jenkins
,
W.
, 1991, “
Structural Optimisation With the Genetic Algorithm
,”
Struct. Eng.
1466-5123,
69
(
24
), pp.
418
422
.
188.
Woon
,
S. Y.
,
Querin
,
O. M.
,
Steven
,
G. P.
, 2001, “
Structural Application of a Shape Optimization Method Based on a Genetic Algorithm
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
1
), pp.
57
64
.
189.
Deb
,
K.
, and
Goyal
,
M.
, 1998, “
A Flexible Optimization Procedure for Mechanical Component Design Based on Genetic Adaptive Search
,”
J. Mech. Des.
1050-0472,
120
(
2
), pp.
162
164
.
190.
Deb
,
K.
, and
Gulati
,
S.
, 2001, “
Design of Truss-Structures for Minimum Weight Using Genetic Algorithms
,”
Finite Elem. Anal. Design
0168-874X,
37
(
5
), pp.
447
465
.
191.
Yoshimura
,
M.
, and
Izui
,
K.
, 2002, “
Smart Optimization of Machine Systems Using Hierarchical Genotype Representations
,”
J. Mech. Des.
1050-0472,
124
(
3
), pp.
375
384
.
192.
Yoshimura
,
M.
,
Nishiwaki
,
S.
, and
Izui
,
K.
, 2005, “
A Multiple Cross-Sectional Shape Optimization Method for Automotive Body Frames
,”
J. Mech. Des.
1050-0472,
127
(
1
), pp.
49
57
.
193.
Narayanan
,
S.
, and
Azarm
,
S.
, 1999, “
On Improving Multiobjective Genetic Algorithms for Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
18
(
2-3
), pp.
146
155
.
194.
Farhang-Mehr
,
A.
,
Azarm
,
S.
, 2002, “
Entropy-Based Multi-Objective Genetic Algorithms for Design Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
24
(
5
), pp.
351
361
.
195.
Watanabe
,
S.
,
Hiroyasu
,
T.
, and
Miki
,
M.
, 2002, “
Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems
,” in
Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning (SEAL-2002)
, pp.
198
202
.
196.
Lee
,
J.
, and
Hajela
,
P.
, 1996, “
Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design
,”
J. Aircr.
0021-8669,
33
(
5
), pp.
962
969
.
197.
Miki
,
M.
,
Hiroyasu
,
T.
, and
Kaneko
,
M.
, 2000, “
A Parallel Genetic Algorithm With Distributed Environment Scheme
,” in
Proceedings of the Genetic and Evolutionary Computation Conference
, pp.
376
376
.
198.
Deb
,
K.
, 2000, “
An Efficient Constraint Handling Method for Genetic Algorithms
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
186
(
2–4
), pp.
311
338
.
199.
Kurpati
,
A.
,
Azarm
,
S.
, and
Wu
,
J.
, 2002, “
Constraint Handling Improvements for Multiobjective Genetic Algorithms
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
3
), pp.
204
213
.
200.
Kincaid
,
R. K.
,
Weber
,
M.
, and
Sobieszczanski-Sobieski
,
J.
, 2001, “
Performance of a Bell-Curve Based Evolutionary Optimization Algorithm
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
4
), pp.
261
271
.
201.
Gutkowski
,
W.
,
Iwanow
,
Z.
, and
Bauer
,
J.
, 2001, “
Controlled Mutation in Evolutionary Structural Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
5
), pp.
355
360
.
202.
Luh
,
G.-C.
, and
Chueh
,
C.-H.
, 2004, “
Multi-Modal Topological Optimization of Structure Using Immune Algorithm
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
36–38
), pp.
4035
4055
.
203.
Kilkki
,
J.
,
Lampinen
,
J.
, and
Martikka
,
H.
, 2001, “
Applying The Differential Evolution Algorithm to the Optimisation of Cross Sections of Steel Columns
,” in
Proceedings of the International Conference on Computer Aided Optimum Design of Structures
, Bologna, Italy, pp.
87
96
.
204.
Balling
,
R. J.
, 1991, “
Optimal Steel Frame Design by Simulated Annealing
,”
J. Struct. Eng.
0733-9445,
117
(
6
), pp.
1780
1795
.
205.
May
,
S. A.
, and
Balling
,
R. J.
, 1992, “
A Filtered Simulated Annealing Strategy for Discrete Optimization of 3D Steel Frameworks
,”
Struct. Optim.
0934-4373,
4
(
3-4
), pp.
142
146
.
206.
Leite
,
J. P. B.
, and
Topping
,
B. H. V.
, 1999, “
Parallel Simulated Annealing for Structural Optimization
,”
Comput. Struct.
0045-7949,
73
(
1–3
), pp.
545
564
.
207.
Fourie
,
P. C.
, and
Groenwold
,
A. A.
, 2002, “
The Particle Swarm Optimization Algorithm in Size and Shape Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
4
), pp.
259
267
.
208.
Schutte
,
J. F.
, and
Groenwold
,
A. A.
, 2003, “
Sizing Design of Truss Structures Using Particle Swarms
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
4
), pp.
261
269
.
209.
Thoft-Christensen
,
P.
, and
Murotsu
,
Y.
, 1986,
Application of Structural Systems Reliability Theory
,
Springer-Verlag
, Berlin.
210.
Wu
,
Y. T.
, and
Wang
,
W.
, 1998, “
Efficient Probability Design by Converting Reliability Constraints to Approximately Equivalent Deterministic Constraints
,”
J. Integr. Des. Process Sci.
1092-0617,
2
(
4
), pp.
13
21
.
211.
Du
,
X.
, and
Chen
,
W.
, 2002, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,” in
Proceedings of the ASME Design Engineeting Technical Conferences
, DETC2002/DAC-34127.
212.
Yang
,
R. J.
, and
Gu
,
L.
, 2004, “
Experience With Approximate Reliability-Based Optimization Methods
,”
Struct. Multidiscip. Optim.
1615-147X,
26
(
1-2
), pp.
152
159
.
213.
Park
,
G. J.
,
Hwang
,
W. J.
, and
Lee
,
W. I.
, 1994, “
Structural Optimization Post-Process Using Taguchi Method
,”
JSME Int. J., Ser. A
1340-8046,
37
(
2
), pp.
166
172
.
214.
Arakawa
,
M.
,
Yamakawa
,
H.
,
Ishikawa
,
H.
, 2000. “
Robust Design Using Fuzzy Numbers, Consideration of Design Variables in Fuzzy Operation
,” in
Proceedings of the ASME Design Engineering Technical Conferences
, DETC2000/DAC-14536.
215.
Antonsson
,
E. K.
, and
Otto
,
K. N.
, 1995, “
Imprecision In Engineering Design
,”
J. Mech. Des.
1050-0472,
117B
, pp.
25
32
.
216.
Yoo
,
J.
, and
Hajela
,
P.
, 2001, “
Fuzzy Multicriterion Design Using Immune Network Simulation
,”
Struct. Multidiscip. Optim.
1615-147X,
22
(
3
), pp.
188
197
.
217.
Gu
,
X.
,
Renaud
,
J. E.
,
Batill
,
S. M.
,
Brach
,
R. M.
,
Budhiraja
,
A.
, 2000, “
Worst Case Propagated Uncertainty of Multidisciplinary Systems in Robust Optimization
,”
Struct. Multidiscip. Optim.
1615-147X,
20
(
3
), pp.
190
213
.
218.
Jármai
,
K.
, and
Farkas
,
J.
, 2001, “
Optimum Cost Design of Welded Box Beams With Longitudinal Stiffeners Using Advanced Backtrack Method
,”
Struct. Multidiscip. Optim.
1615-147X,
21
(
1
), pp.
52
59
.
219.
Pavlovcic
,
L.
,
Krajnc
,
A.
, and
Beg
,
D.
, 2004, “
Cost Function Analysis in the Structural Optimization of Steel Frames
,”
Struct. Multidiscip. Optim.
1615-147X,
28
(
4
), pp.
286
295
.
220.
Akl
,
W.
,
Ruzzene
,
M.
, and
Baz
,
A.
, 2002, “
Optimal Design of Underwater Stiffened Shells
,”
Struct. Multidiscip. Optim.
1615-147X,
23
(
4
), pp.
297
310
.
221.
Khajehpour
,
S.
, and
Grierson
,
D. E.
, 2003, “
Profitability Versus Safety of High-Rise Office Buildings
,”
Struct. Multidiscip. Optim.
1615-147X,
25
(
4
), pp.
279
293
.
222.
Gantois
,
K.
, and
Morris
,
A. J.
, 2004, “
The Multi-Disciplinary Design of a Large-Scale Civil Aircraft Wing Taking Account of Manufacturing Costs
,”
Struct. Multidiscip. Optim.
1615-147X,
28
(
1
), pp.
31
46
.
223.
Chirehdast
,
M.
,
Linder
,
B.
,
Yang
,
J.
, and
Papalambros
,
P. Y.
, 1993, “
Concurrent Engineering in Optimal Structural Design
,”
Concurrent Engineering: Automation, Tools, and Techniques
,
A.
Kusiak
, ed.,
Wiley
, New York, pp.
75
109
.
224.
Rosen
,
D.
, and
Grosse
,
I.
, 1992, “
Feature Based Shape Optimization Technique for the Configuration and Parametric Design of Flat Plates
,”
Eng. Comput.
0177-0667,
82
(
2
), pp.
81
91
.
225.
Shen
,
J.
, 2003, “
Feature-Based Optimization of Beam Structures Represented by Polygonal Meshes
,”
J. Comput. Inf. Sci. Eng.
1530-9827,
3
(
3
), pp.
243
249
.
226.
Zhou
,
M.
,
Shyy
,
Y. K.
, and
Thomas
,
H. L.
, 2001, “
Topology Optimization With Manufacturing Constraints
,” in
Proceedings of the 4th World Congress of Structural and Multidisciplinary Optimization
, Dalian, China.
227.
Rodríguez
,
J. F.
,
Thomas
,
J. P.
, and
Renaud
,
J. E.
, 2003, “
Design of Fused-Deposition ABS Components for Stiffness and Strength
,”
J. Mech. Des.
1050-0472,
125
(
3
), pp.
545
551
.
228.
Chickermane
,
H.
, and
Gea
,
H. C.
, 1997, “
Design of Multi-Component Structural System for Optimal Layout Topology and Joint Locations
,”
Eng. Comput.
0177-0667,
13
(
4
), pp.
235
243
.
229.
Johanson
,
R.
,
Kikuchi
,
N.
, and
Papalambros
,
P.
, 1994, “
Simultaneous Topology and Material Microstructure Design
,”
Advances in Structural Optimization
,
Topping
,
B. H. V.
and
Papadrakakis
,
M.
, eds.,
Civil-Comp Ltd.
, Edinburgh, Scotland, pp.
143
149
.
230.
Jiang
,
T.
, and
Chirehdast
,
M.
, 1997, “
A Systems Approach to Structural Topology Optimization: Designing Optimal Connections
,”
J. Mech. Des.
1050-0472,
119
(
1
), pp.
40
47
.
231.
Li
,
Q.
,
Steven
,
G. P.
, and
Xie
,
Y. M.
, 2001, “
Evolutionary Structural Optimization for Connection Topology Design of Multi-Component Systems
,”
Eng. Comput.
0177-0667,
18
(
3-4
), pp.
460
479
.
232.
Yetis
,
A.
, and
Saitou
,
K.
, 2002, “
Decomposition-Based Assembly Synthesis Based on Structural Considerations
,”
J. Mech. Des.
1050-0472,
124
(
4
), pp.
593
601
.
233.
Lyu
,
N.
, and
Saitou
,
K.
, 2003, “
Decomposition-Based Assembly Synthesis for Structural Stiffness
,”
J. Mech. Des.
1050-0472,
125
(
3
), pp.
452
463
.
234.
Lyu
,
N.
, and
Saitou
,
K.
, 2005, “
Decomposition-Based Assembly Synthesis of a Three-Dimensional Body-in-White Model for Structural Stiffness
,”
J. Mech. Des.
1050-0472,
127
(
1
), pp.
34
48
.
235.
Lyu
,
N.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis of Space Frame Structures Using Joint Library
,” in
Proceedings of the ASME Design Engineering Technical Conferences
, Salt Lake City, Utah, September 28-October 2, 2004, DETC200–4–57301.
236.
Lyu
,
N.
, and
Saitou
,
K.
, 2005, “
Topology Optimization of Multi-Component Structures Via Decomposition-Based Assembly Synthesis
,”
ASME J. Mech. Des.
1050-0472,
127
(
2
), pp.
170
183
.
237.
Lyu
,
N.
,
Lee
,
B.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Structural Stiffness and Dimensional Integrity
,” in
Proceedings of the ASME International Mechanical Engineering Congress and R&D Expo
, Anaheim, California, November 13-19, IMECE200–4–62229.
238.
Fellini
,
R.
,
Kokkolaras
,
M.
,
Michelena
,
N.
,
Papalambros
,
P.
,
Saitou
,
K.
,
Perez-Duarte
,
A.
,
Fenyes
,
P.
, 2004, “
A Sensitivity-Based Commonality Strategy for Family Products of Mild Variation, With Application to Automotive Body Structures
,”
Struct. Multidiscip. Optim.
1615-147X,
27
(
1-2
), pp.
89
96
.
239.
Cetin
,
O. L.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Maximum Structural Strength and Modularity
,”
J. Mech. Des.
1050-0472,
126
(
2
), pp.
244
253
.
240.
Cetin
,
O.
, and
Saitou
,
K.
, 2004, “
Decomposition-Based Assembly Synthesis for Structural Modularity
,”
J. Mech. Des.
1050-0472,
126
(
2
), pp.
234
243
.
241.
Cetin
,
O.
, and
Saitou
,
K.
, 2003, “
Decomposition-Based Assembly Synthesis of Multiple Structures for Minimum Production Cost
,” in
Proceedings of the ASME International Mechanical Engineering Congress and R&D Expo
, Washington, D.C., November 16–21, IMECE200–3–43085.
You do not currently have access to this content.