Industrial laser systems handle high power consumptions and may function under undesirable operating conditions if the systems are not properly maintained. It is sometimes difficult to diagnose why a laser is not functioning properly because the optical output is the result of complex interactions among many parameters such as the total gas pressure, effectiveness of the laser cooling system, operating environment, and gradual deterioration of laser components. In this paper, a dynamic power distribution model is developed to characterize the power distribution of a high-power transverse-flow DC-excited CO2 laser to account for dynamic effects such as continuously ramping up and down the laser output power and the cyclic nature of the chiller. The model contains the essential dynamic features of a CO2 laser system and yields solutions sufficiently accurate for practical diagnostic purposes.

1.
Denes
L. J.
and
Lowke
J. J.
,
1973
, “
V-I Characteristics of Pulsed CO2 Laser Discharges
,”
Applied Physics Letters
, Vol.
23
, No.
3
, pp.
130
132
.
2.
Incropera, F. P., and DeWitt, D. P., 1985, Introduction to Heat Transfer, Wiley, New York.
3.
Hsu
C. R.
,
Albright
C. E.
, and
Khakhalev
A.
,
1996
, “
The Influence of Laser Cavity Gaseous Impurities on the Performance of an Industrial CO2 Laser
,”
Journal of Laser Applications
, Vol.
8
, pp.
275
283
.
4.
Katter
J. G.
,
Tu
J. F.
, and
Gartner
M.
,
1997
, “
A Power Distribution Model of CO2 Lasers for System Diagnosis
,”
Journal of Laser Applications
, Vol.
9
, pp.
161
169
.
5.
Katter
J. G.
,
Tu
J. F.
,
Monacelli
L. E.
, and
Gartner
M.
,
1998
, “
Predictive Cathode Maintenance of an Industrial Laser Using Statistical Process Control Charting
,”
Journal of Laser Applications
, Vol.
10
, pp.
161
169
.
6.
Li, L., Hibberd, R. H., and Steen, W. M., 1987, “In-Process Laser Power Monitoring and Feedback Control,” Proc. 4th Int. Conf. Lasers in Manufacturing, Birmingham, UK, 12–14 May, pp. 165–175.
7.
Lowke
J. J.
,
Phelps
A. V.
, and
Irwin
B. W.
,
1973
, “
Predicted Electron Transport Coefficients and Operating Characteristics of CO2-N2-He Laser Mixtures
,”
Journal of Applied Physics
, Vol.
44
, No.
10
, pp.
4664
4670
.
8.
Rofin-Sinar Inc., 1993, Manual for Rofin-Sinar Lasers, Revision C.
9.
Owen, J. V., 1995, “What Laser Users Want,” Manufacturing Engineering, Aug., pp. 37–45.
10.
Pedrotti, F. L., and Pedrotti, L. S., 1993, Introduction to Optics, Prentice Hall, Englewood Cliffs, NJ.
11.
Rapp, E. W., Water, 1985, “Cooling of Lasers: Design Considerations and Techniques,” Lasers and Applications, Mar., pp. 91–93.
12.
Rofin-Sinar Inc., 1991, Rofin-Sinar 8501 Manual, Revision B.
13.
Sasnett, M. W., 1984, “Comparing Industrial CO2 Lasers—Gas-Flow Techniques Have a Strong Operating Influence on CO2 Laser Parameters,” Lasers and Applications, Sept., pp. 85–90.
14.
Scatena, D. J. and Herrit, G. L., 1990, “How to Avoid Contamination Problems in CO2 Laser Optics,” Laser Focus World, Dec, pp. 117–126.
15.
Steen, W. M., 1991, Laser Material Processing, Springer-Verlag, London.
16.
Takahashi
H.
,
Kimura
M.
, and
Sano
R.
,
1989
, “
Optical Distortion of Transmissive Optics at High Power CO2 Laser Irradiation
,”
Applied Optics
, Vol.
28
, No.
9
, pp.
1727
1730
.
17.
Tam
S. C.
,
Noor
Y. M.
, and
Yang
L. J.
,
1993
, “
Maximizing the Output Power of a CO2 Laser Using the Taguchi Technique
,”
IEEE Journal of Quantum Electronics
, Jan., Vol.
29
, pp.
192
200
.
18.
Verdeyen, T. J., 1993, Laser Electronics, Prentice-Hall, Englewood Cliffs, NJ.
This content is only available via PDF.
You do not currently have access to this content.