Programmable mechanical compliance in actuation is desirable for human interaction tasks and important for producing biomimetic motion, particularly for robots designed for use in domestic settings. In this paper, the equilibrium point (EP) hypothesis is proposed and implemented as a new strategy for controlling programmable compliance. The primary objective of this work is to design and demonstrate a simple robot control strategy that can potentially be used by assistive robots to learn and execute compliant interaction tasks from human demonstrations. A 2-DOF planar manipulator activated by McKibben actuators was constructed for the purpose of demonstrating the application of the EP hypothesis on an inexpensive robotic platform, such as might be used in domestic applications. The equilibrium angle and stiffness of each of the joints on the manipulator can be independently programmed. The results presented herein show stable and satisfactory tracking behavior during free motion, interaction, and transition tasks for a robot control system inspired by the EP hypothesis and implemented with a linear proportional-integral (PI) control strategy.

1.
Ikuta
,
K.
, and
Nokata
,
M.
, 2003, “
Safety Evaluation Method of Design and Control for Human-Care Robots
,”
Int. J. Robot. Res.
0278-3649,
22
, pp.
281
297
.
2.
Yamada
,
Y.
,
Hirawawa
,
Y.
,
Huang
,
S.
,
Umetani
,
Y.
, and
Suita
,
K.
, 1997, “
Human-Robot Contact in the Safeguarding Space
,”
Mechatronics
0957-4158,
2
, pp.
230
236
.
3.
Bicchi
,
A.
,
Rizzino
,
S.
, and
Tonietti
,
G.
, 2001, “
Compliant Design for Intrinsic Safety: General Issues and Preliminary Design
,”
Intelligent Robots and Systems, 2001, Proc. of 2001 IEEE/RSJ International Conference on
,
IEEE
,
New York
, Vol.
4
, pp.
1864
1869
.
4.
Sciavicco
,
L.
, and
Siciliano
,
B.
, 1996,
Modeling and Control of Robot Manipulators
,
McGraw-Hill
,
New York
.
5.
Okada
,
M.
,
Nakamura
,
Y.
, and
Ban
,
S.
, 2001, “
Design of a Programmable Passive Compliance Shoulder Mechanism
,”
Proc. IEEE International Conference on Robotics and Automation
,
IEEE
,
New York
, pp.
348
353
.
6.
Robinson
,
D. W.
,
Pratt
,
J. E.
,
Paluska
,
D. J.
, and
Pratt
,
G. A.
, 1999, “
Series Elastic Actuator Development for a Biomimetic Walking Robot
,”
Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
IEEE
,
New York
, pp.
561
568
.
7.
Mills
,
J. K.
, and
David
,
M. L.
, 1993, “
Control of Robotic Manipulators During General Task Execution: A Discontinuous Control Approach
,”
Int. J. Robot. Res.
0278-3649,
12
(
2
), pp.
146
163
.
8.
Bicchi
,
A.
,
Rizzino
,
S.
, and
Tonietti
,
G.
, 2001, “
Adaptive Simultaneous Position and Stiffness Control of a Soft Robot Arm
,”
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
New York
, Vol.
4
, pp.
1992
1997
.
9.
Colbrunn
,
R. W.
,
Nelson
,
G. M.
, and
Quinn
,
R. D.
, 2001, “
Design and Control of a Robotic Leg With Braided Pneumatic Actuators
,”
Proc. IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
,
New York
, Vol.
2
, pp.
992
998
.
10.
Noritsugu
,
T.
, and
Tanaka
,
T.
, 1997, “
Applications of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot
,”
Mechatronics
0957-4158,
2
(
4
), pp.
259
267
.
11.
Tondu
,
B.
,
Boitier
,
V.
, and
Lopez
,
P.
, 1994, “
Naturally Compliant Robot-Arms Actuated By McKibben Artificial Muscles
,”
Proc. IEEE International Conference on Systems, Man and Cybernetics
, San Antonio,
IEEE
,
New York
, Vol.
3
, pp.
2635
2640
.
12.
Goswami
,
A.
, and
Peshkin
,
M. A.
, 1993, “
Mechanical Computation for Passive Force Control
,”
Proc. IEEE International Conference on Robotics and Automation
, Vol.
1
, pp.
476
438
.
13.
Schimmels
,
J. M.
, and
Peshkin
,
J. A.
, 1992, “
Admittance Matrix Design for Force-Guided Assembly
,”
IEEE Trans. Rob. Autom.
1042-296X,
8
(
2
), pp.
213
227
.
14.
Lin
,
Q.
,
Burdick
,
J. W.
, and
Rimon
,
E.
, 2000, “
A Stiffness-Based Quality Measure for Compliant Grasps and Fixtures
,”
IEEE Trans. Rob. Autom.
1042-296X,
16
(
6
), pp.
675
688
.
15.
Chen
,
S.-F.
, and
Kao
,
I.
, 2000, “
Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers
,”
Int. J. Robot. Res.
0278-3649,
19
(
9
), pp.
835
847
.
16.
Patterson
,
T.
, and
Lipkin
,
H.
, 1993, “
A Classification of Robot Compliance
,”
J. Mech. Des.
1050-0472,
155
(
3
), pp.
581
584
.
17.
Tondu
,
B.
, and
Lopez
,
P.
, 2000, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
0272-1708,
20
, April, pp.
15
38
.
18.
Medrano-Cerda
,
G. A.
,
Bowler
,
C. J.
,
Caldwell
,
D. G.
, 1995, “
Adaptive Position Control of Antagonistic Pneumatic Muscle Actuators
,”
Proc. IEEE International Conference on Intelligent Robots and Systems
, Vol.
1
, pp.
378
383
.
19.
Klute
,
G. K.
,
Czerniecki
,
J. M.
, and
Hannaford
,
B.
, 1999, “
McKibben Artificial Air Muscles: Pneumatic Actuators with Biomechanical Intelligence
,”
Proc. IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
IEEE
,
New York
, pp.
221
226
.
20.
Bizzi
,
E.
,
Hogan
,
N.
,
Mussaivaldi
,
F. O.
, and
Giszler
,
S.
, 1992, “
Does the Nervous System use Equilibrium-Point Control to Guide Single and Multiple Joint Movements?
,”
Behav. Brain Sci.
0140-525X,
15
, pp.
603
615
.
21.
Feldman
,
A.
, and
Levin
,
M.
, 1995, “
The Origin and Use of Positional Frame of Reference in Motor Control
,”
Behav. Brain Sci.
0140-525X,
18
, pp.
723
806
.
22.
Clapa
,
D.
, 2004, “
Equilibrium Point Control of a Programmable Mechanical Compliant Manipulator
,” M.A.Sc. thesis, Department of Mechanical Engineer-ing, University of British Columbia.
24.
Chou
,
C. P.
, and
Hannaford
,
B.
, 1996, “
Measurement and Modeling of Artificial Muscles
,”
IEEE Trans. Rob. Autom.
1042-296X,
12
, pp.
90
102
.
25.
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
, 2000, “
Improved Modelling and Assessment of Pneumatic Muscle Actuators
,”
Proc. IEEE International Conf. on Robotics and Automation
,
IEEE
,
New York
, pp.
3641
3646
.
26.
Tee
,
K. P.
,
Burdet
,
E.
,
Chew
,
C. M.
, and
Milner
,
T. E.
, 2004, “
A Model of Force and Impedance in Human Arm Movements
,”
Biol. Cybern.
0340-1200,
90
, pp.
368
375
.
You do not currently have access to this content.