In this paper, we explore the use of end forces for vibration control in structural elements. The process involves vibration measurement and observer-based estimation of modal amplitudes, which are used to determine when to apply an end load such that it will remove vibration energy from the structure. For this study, we consider transverse vibration of a cantilever beam with a buckling-type end load that can be switched between two values, both of which are below the buckling load. The stability of the control system is proven using Lyapunov stability theory and its effectiveness is demonstrated using simulations and physical experiments. It is shown that the effectiveness of the approach is affected by the bandwidth of the actuator and the attendant characteristics of the filter, the level of the control force, and the level of bias in the end force. The experiments employ a beam fitted with a cable mechanism and motor for applying the end force, and a piezoelectric patch for taking vibration measurements. It is shown that the first two modes of the beam, whose natural frequencies are less than the bandwidth of the motor, are very effectively controlled by the proposed scheme.

1.
Balas
,
M. J.
, 1982, “
Trends in Large Space Structure Control Theory: Fondest Hopes, Wildest Dreams
,”
IEEE Trans. Autom. Control
0018-9286,
AC-27
(
3
), pp.
522
535
.
2.
Hyland
,
D. C.
,
Junkins
,
J. L.
, and
Longman
,
R. W.
, 1993, “
Active Control Technology for Large Space Structures
,”
J. Guid. Control Dyn.
0731-5090,
16
(
5
), pp.
801
821
.
3.
Nurre
,
G. S.
,
Ryan
,
R. S.
,
Scofield
,
H. N.
, and
Sims
,
J. L.
, 1984, “
Dynamics and Control of Large Space Structures
,”
J. Guid. Control Dyn.
0731-5090,
7
(
5
), pp.
514
526
.
4.
Bolotin
,
V. V.
, 1963,
Nonconservative Problems of the Theory of Elastic Stability
,
Pergamon Press
,
New York
.
5.
Herrmann
,
G.
, 1971, “
Dynamics and Stability of Mechanical Systems With Follower Forces
,” Nasa Contractor Report, NASA CR-1782.
6.
Higuchi
,
K.
, and
Dowell
,
E. H.
, 1992, “
Effect of Structural Damping on Flutter of Plates With a Follower Force
,”
AIAA J.
0001-1452,
30
(
3
), pp.
820
825
.
7.
Langthjem
,
M. A.
, and
Sugiyama
,
Y.
, 2000, “
Dynamic Stability of Columns Subjected to Follower Loads: A Survey
,”
J. Sound Vib.
0022-460X,
238
(
5
), pp.
809
851
.
8.
O’Reilly
,
O. M.
,
Malhotra
,
N. K.
, and
Namachchivaya
,
N. S.
, 1996, “
Some Aspects of Destabilization of the Equilibria of Reversible Dynamical Systems With Application to Follower Forces
,”
Nonlinear Dyn.
0924-090X,
10
(
1
), pp.
63
87
.
9.
Park
,
S.-H.
, and
Kim
,
J.-H.
, 2000, “
Dynamic Stability of a Completely Free Circular Cylindrical Shell Subjected to a Follower Force
,”
J. Sound Vib.
0022-460X,
231
(
4
), pp.
989
1005
.
10.
Zuo
,
Q. H.
, and
Schreyer
,
H. L.
, 1996, “
Flutter and Divergence Instability of Nonconservative Beams and Plates
,”
Int. J. Solids Struct.
0020-7683,
33
(
9
), pp.
1355
1367
.
11.
Timoshenko
,
S. T.
, and
Gere
,
J. M.
, 1961,
Theory of Elastic Stability
,
McGraw-Hill
,
New York
.
12.
Achkire
,
Y.
, and
Preumont
,
A.
, 1996, “
Active Tendon Control of Cable-Stayed Bridges
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
25
, pp.
585
597
.
13.
Preumont
,
A.
, and
Bossens
,
F.
, 2000, “
Active Tendon Control of Vibration of Truss Structures: Theory and Experiments
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
2
(
11
), pp.
91
99
.
14.
Skidmore
,
G. R.
, and
Hallaeur
, Jr.,
W. L.
, 1985, “
Modal-Space Active Damping of a Beam-Cable Structure: Theory and Experiment
,”
J. Sound Vib.
0022-460X,
101
(
2
), pp.
149
160
.
15.
Magana
,
M. E.
,
Volz
,
P.
, and
Miller
,
T.
, 1997, “
Nonlinear Decentralized Control of a Flexible Cable-Stayed Beam Structure
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
523
526
.
16.
Thomson
,
P.
,
Balas
,
G. J.
, and
Leo
,
P. H.
, 1995, “
The Use of Shape Memory Alloys for Passive Structural Damping
,”
Smart Mater. Struct.
0964-1726,
4
, pp.
36
42
.
17.
Khalil
,
H.
, 2002,
Nonlinear Systems
,
Prentice Hall
,
New Jersey
.
18.
Balas
,
M. J.
, 1978, “
Feedback Control of Flexible Systems
,”
IEEE Trans. Autom. Control
0018-9286,
AC-23
(
4
), pp.
673
679
.
19.
Ziegler
,
H.
, 1968,
Principles of Structural Stability
,
Blaisdell Publishing Company
,
Massachusetts
.
20.
Brush
,
D. O.
, and
Almroth
,
B. O.
, 1975,
Buckling of Bars, Plates, and Shells
,
McGraw Hill
,
New York
.
21.
Reddy
,
J. N.
, 1993,
An Introduction to the Finite Element Method
,
McGraw Hill
,
New York
.
22.
Langthjem
,
M. A.
, and
Sugiyama
,
Y.
, 2000, “
Optimum Design of Cantilevered Columns Under the Combined Action of Conservative and Nonconservative Loads. Part I: The Undamped Case
,”
Comput. Struct.
0045-7949,
74
, pp.
385
398
.
23.
Lee
,
H. P.
, 1995, “
Divergence and Flutter of a Cantilever Rod With an Intermediate Spring Support
,”
Int. J. Solids Struct.
0020-7683,
32
(
10
), pp.
1371
1382
.
24.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
John Wiley
,
New York
.
25.
Habib
,
M. S.
, and
Radcliffe
,
C. J.
, 1991, “
Active Parametric Damping of Distributed Parameter Beam Transverse Vibration
,”
J. Dyn. Syst., Meas., Control
0022-0434,
113
,
295
299
.
26.
Devasia
,
S.
,
Meressi
,
T.
,
Paden
,
B.
, and
Bayo
,
E.
, 1993, “
Piezoelectric Actuator Design for Vibration Suppression: Placement and Sizing
,”
J. Guid. Control Dyn.
0731-5090,
16
(
5
),
859
864
.
You do not currently have access to this content.