This paper addresses the problem of parameter dependent state feedback control (i.e. gain scheduling) for linear systems with parameters that are assumed to be available (measured or estimated) in real time and are allowed to vary in a compact polytopic set with bounded variation rates. A new sufficient condition given in terms of linear matrix inequalities permits to determine the controller gain as an analytical function of the time-varying parameters and of a set of constant matrices. The closed-loop stability is assured by means of a parameter dependent Lyapunov function. The condition proposed encompasses the well-known quadratic stabilizability condition and allows to impose structural constraints such as decentralization to the feedback gains. Numerical examples illustrate the efficiency of the technique.

1.
Leith
,
D. J.
, and
Leithead
,
W. E.
, 2000, “
Survey of Gain-Scheduling Analysis and Design
,”
Int. J. Control
0020-7179,
73
(
11
), pp.
1001
1025
.
2.
Rugh
,
W. J.
, and
Shamma
,
J. S.
, 2000, “
Research on Gain Scheduling
,”
Automatica
0005-1098,
36
(
10
), pp.
1401
1425
.
3.
Stilwell
,
D. J.
, and
Rugh
,
W. J.
, 1999, “
Interpolation of Observer State Feedback Controllers for Gain Scheduling
,”
IEEE Trans. Autom. Control
0018-9286,
44
(
6
), pp.
1225
1229
.
4.
Shamma
,
J. S.
, and
Athans
,
M.
, 1991, “
Guaranteed Properties of Gain Scheduled Control for Linear Parameter-Varying Plants
,”
Automatica
0005-1098,
27
(
3
), pp.
559
564
.
5.
Shamma
,
J. S.
, and
Athans
,
M.
, 1992, “
Gain Scheduling: Potential Hazards and Possible Remedies
,”
IEEE Control Syst. Mag.
0272-1708,
12
(
3
), pp.
101
107
.
6.
Bernussou
,
J.
,
Peres
,
P. L. D.
, and
Geromel
,
J. C.
, 1989, “
A Linear Programming Oriented Procedure for Quadratic Stabilization of Uncertain Systems
,”
Syst. Control Lett.
0167-6911,
13
(
1
), pp.
65
72
.
7.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory, SIAM Studies in Applied Mathematics
,
Philadelphia
, PA.
8.
Amato
,
F.
,
Corless
,
M.
,
Mattei
,
M.
, and
Setola
,
R.
, 1997, “
A Multivariable Stability Margin in the Presence of Time-Varying, Bounded Rate Gains
,”
Int. J. Robust Nonlinear Control
1049-8923,
7
, pp.
127
143
.
9.
Apkarian
,
P.
, and
Tuan
,
H. D.
, 2000, “
Parametrized LMIs in Control Theory
,”
SIAM J. Control Optim.
0363-0129
38
(
4
), pp.
1241
1264
.
10.
Feron
,
E.
,
Apkarian
,
P.
, and
Gahinet
,
P.
, 1996, “
Analysis and Synthesis of Robust Control Systems via Parameter-Dependent Lyapunov Functions
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
7
) pp.
1041
1046
.
11.
Gahinet
,
P.
,
Apkarian
,
P.
, and
Chilali
,
M.
, 1996, “
Affine Parameter-Dependent Lyapunov Functions and Real Parametric Uncertainty
,”
IEEE Trans. Autom. Control
0018-9286,
41
(
3
), pp.
436
442
.
12.
Haddad
,
W. M.
, and
Bernstein
,
D. S.
, 1995, “
Parameter-Dependent Lyapunov Functions and the Popov Criterion in Robust Analysis and Synthesis
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
3
), pp.
536
543
.
13.
Wang
,
F.
, and
Balakrishnan
,
V.
, 2002, “
Improved Stability Analysis and Gain-Scheduled Controller Synthesis for Parameter-Dependent Systems
,”
IEEE Trans. Autom. Control
0018-9286,
47
(
5
), pp.
720
734
.
14.
Apkarian
,
P.
, and
Adams
,
R. J.
, 1998, “
Advanced Gain-Scheduling Techniques for Uncertain Systems
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
6
(
1
) pp.
21
32
.
15.
Wu
,
F.
, 2001, “
A Generalized LPV System Analysis and Control Synthesis Framework
,”
Int. J. Control
0020-7179,
74
(
7
), pp.
745
759
.
16.
Wu
,
F.
,
Yang
,
X. H.
,
Packard
,
A.
, and
Becker
,
G.
, 1996, “
Induced L2 -Norm Control for LPV Systems with Bounded Parameter Variation Rates
,”
Int. J. Robust Nonlinear Control
1049-8923,
6
, pp.
983
998
.
17.
Apkarian
,
P.
, and
Gahinet
,
P.
, 1995, “
A Convex Characterization of Gain-Scheduled H∞ Controllers
,”
IEEE Trans. Autom. Control
0018-9286,
40
(
5
), pp.
853
864
.
18.
Packard
,
A.
, 1994, “
Gain Scheduling via Linear Fractional Transformations
,”
Syst. Control Lett.
0167-6911,
22
(
2
), pp.
79
92
.
19.
Scorletti
,
G.
, and
El Ghaoui
,
L.
, 1998, “
Improved LMI Conditions for Gain scheduling and Related Control Problems
,”
Int. J. Robust Nonlinear Control
1049-8923,
8
(
10
), pp.
845
877
.
20.
Gahinet
,
P.
,
Nemirovskii
,
A.
,
Laub
,
A. J.
, and
Chilali
,
M.
, 1995,
LMI Control Toolbox User’s Guide, The Math Works Inc.
,
Natick
, MA.
21.
Montagner
,
V. F.
, and
Peres
,
P. L. D.
, 2004, “
Robust Stability and H∞ Performance of Linear Time-Varying Systems in Polytopic Domains
,”
Int. J. Control
0020-7179,
77
(
15
), pp.
1343
1352
.
22.
Peres
,
P. L. D.
, and
Geromel
,
J. C.
, 1994, “
An Alternate Numerical Solution to the Linear Quadratic Problem
,”
IEEE Trans. Autom. Control
0018-9286,
39
(
1
) pp.
198
202
.
23.
Leite
,
V. J. S.
,
Montagner
,
V. F.
, and
Peres
,
P. L. D.
, 2002, “
Robust Pole Location by Parameter Dependent State Feedback Control
,”
Proceedings of the 41st IEEE Conference on Decision and Control
,
Las Vegas
, December 10–13, IEEE Control Systems Society, pp.
1864
-
1869
.
You do not currently have access to this content.