In this paper, the regional eigenvalue-clustering robustness problem of linear discrete singular time-delay systems with structured (elemental) parameter uncertainties is investigated. Under the assumptions that the linear nominal discrete singular time-delay system is regular and causal, and has all its finite eigenvalues lying inside certain specified regions, two new sufficient conditions are proposed to preserve the assumed properties when the structured parameter uncertainties are added into the linear nominal discrete singular time-delay system. When all the finite eigenvalues are just required to locate inside the unit circle, the proposed criteria will become the stability robustness criteria. For the case of eigenvalue clustering in a specified circular region, one proposed sufficient condition is mathematically proved to be less conservative than those reported very recently in the literature. Another new sufficient condition is also proposed for guaranteeing that the linear discrete singular time-delay system with both structured (elemental) and unstructured (norm-bounded) parameter uncertainties holds the properties of regularity, causality, and eigenvalue clustering in a specified region. An example is given to demonstrate the applicability of the proposed sufficient conditions.

1.
Horng
,
I. R.
,
Horng
,
H. Y.
, and
Chou
,
J. H.
, 1993, “
Eigenvalue Clustering in Subregions of the Complex Plane for Interval Dynamic Systems
,”
Int. J. Syst. Sci.
0020-7721,
24
, pp.
901
914
.
2.
Yedavalli
,
R. K.
, 1993, “
Robust Root Clustering for Linear Uncertain System Using Generalized Lyapunov Theory
,”
Automatica
0005-1098,
29
, pp.
237
240
.
3.
Yedavalli
,
R. K.
, 1993, “
A Kronecker Based Theory for Robust Root Clustering of Linear State Space Models With Real Parameter Uncertainty
,”
Proc. of the American Control Conference
,
San Francisco
,
CA
, June 2-4, pp.
2755
2759
.
4.
Barmish
,
B. R.
, 1994,
New Tools for Robustness of Linear Systems
,
Macmillan
,
New York
.
5.
Wang
,
S. G.
, and
Shieh
,
L.
, 1994, “
Robustness of Linear Quadratic Regulators With Regional-Pole Constraints for Uncertain Linear Systems
,”
Control Theory Adv. Technol.
0911-0704,
10
, pp.
737
769
.
6.
Wang
,
S. G.
, and
Shieh
,
L.
, 1994, “
A General Theory for Analysis and Design of Robust Pole Clustering in Subregions of the Complex Plane
,”
Proc. of the 1994 American Control Conf.
,
Baltimore
,
MD
, June 29–July 1, pp.
627
631
.
7.
Yedavalli
,
R. K.
, and
Ashokkumar
,
C. R.
, 1994, “
Eigenstructure Perturbation in Disjointed Domains for Linear Systems with Structured Uncertainty
,”
Proc. of the 1994 AIAA Guidance
, Navigation and Control Conference,
Scottsdale
,
AZ
, May 31, pp.
358
367
.
8.
Bachelier
,
O.
, and
Pradin
,
B.
, 1999, “
Bounds for Uncertain Matrix Root-Clustering in a Union of Subregions
,”
Int. J. Robust Nonlinear Control
1049-8923,
9
, pp.
333
359
.
9.
Fang
,
C. H.
,
Lee
,
L.
, and
Chang
,
F. R.
, 1994, “
Robust Control Analysis and Design for Discrete-Time Singular Systems
,”
Automatica
0005-1098,
30
, pp.
1741
1750
.
10.
Lee
,
L.
, and
Fang
,
C. H.
, 1994, “
Regional Pole-Clustering Robustness for Uncertain Generalized State-Space Systems
,”
Proc. of the 33rd IEEE Conference on Decision and Control
,
Orlando, FL
, November 14-16, pp.
587
588
.
11.
Fang
,
C. H.
, 1997, “
Robust Stability of Generalized State-Space Systems
,” Ph.D. dissertation, Department of Electrical Engineering, National Sun Yat-Sen University, Taiwan.
12.
Chou
,
J. H.
, and
Liao
,
W. H.
, 1998, “
Regional Eigenvalue-Clustering Robustness Analysis for Singular Systems With Structured Parameter Perturbations
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
212
, pp.
467
471
.
13.
Chou
,
J. H.
,
Chen
,
S. H.
, and
Hsieh
,
C. H.
, 2003, “
Regional Eigenvalue-Clustering Robustness Analysis for Singular Systems With Both Structured and Unstructured Perturbations
,”
Int. J. Control
0020-7179,
76
, pp.
18
23
.
14.
Dai
,
L.
, 1989,
Singular Control Systems
,
Springer-Verlag
,
Berlin
.
15.
Weinmann
,
A.
, 1991,
Uncertain Models and Robust Control
,
Springer-Verlag
,
Hong Kong
.
16.
Liu
,
Y. Q.
, and
Xie
,
X. S.
, 1998,
Stability and Stabilization of Linear Singular Systems With Time Delay
,
South China University of Technology
,
Guangzhou
.
17.
Xu
,
S.
,
Lam
,
J.
, and
Zheng
,
L.
, 2002, “
Robust D-Stability Analysis for Uncertain Discrete Singular Systems With State Delay
,”
IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122,
49
, pp.
551
555
.
18.
Pan
,
S. T.
, and
Chen
,
C. F.
, 2002, “
Robust D-Stability for Discrete-delay Singular Systems
,”
Proc. of the 2002 Conference on Industrial Automatic Control & Power Application
,
Taiwan
, December 6, pp.
E3:39
43
.
19.
Pan
,
S. T.
, and
Chen
,
C. F.
, 2003, “
Study on the Robust D-Stability Problem of Discrete Singular Time-Delay Systems
,”
presented at the Conference on the Project Reports of Control Division
, National Science Council, Taiwan, Poster Paper No. E109.
20.
Chen
,
S. H.
, and
Chou
,
J. H.
, 2004, “
D-Stability Robustness for Linear Discrete Uncertain Singular Systems with Delayed Perturbations
,”
Int. J. Control
0020-7179,
77
, pp.
685
692
.
21.
Chen
,
S. H.
, and
Chou
,
J. H.
, 2003, “
Stability Robustness of Linear Discrete Singular Time-Delay Systems With Structured Parameter Uncertainties
,”
IEE Proc.: Control Theory Appl.
1350-2379,
150
, pp.
295
302
.
22.
Chou
,
J. H.
, 1991, “
Pole-Assignment Robustness in a Specified Disk
,”
Syst. Control Lett.
0167-6911,
16
, pp.
41
44
.
23.
Henrion
,
D.
,
Arzelier
,
D.
,
Peaucelle
,
D.
, and
Sebek
,
M.
, 2001, “
An LMI Condition for Robust Stability of Polynomial Matrix Polytopes
,”
Automatica
0005-1098,
37
, pp.
461
468
.
24.
Lewis
,
F. L.
, 1986, “
A Survey of Linear Singular Systems
,”
Circuits Syst. Signal Process.
0278-081X,
5
, pp.
3
36
.
25.
Jung
,
Y. T.
,
Kuo
,
T. S.
, and
Hsu
,
C. F.
, 1987, “
Stability Robustness Analysis of Digital Control Systems in State-Space Models
,”
Int. J. Control
0020-7179,
46
, pp.
1547
1556
.
26.
Ortega
,
J. M.
, 1972,
Numerical Analysis
,
Academic
,
New York
.
27.
Chen
,
C. T.
, 1984,
Linear Systems Theory and Design
,
Holt
,
Rinehart and Winston, New York
.
28.
Churchill
,
R. V.
, and
Brown
,
J. W.
, 1990,
Complex Variables and Applications
,
McGraw-Hill
,
New York
.
29.
Chou
,
J. H.
, and
Chen
,
S. H.
, 2001, “
Asymmetric Sufficient Condition for Stability Robustness of Singular Systems With Structured Parameter Uncertainties
,”
J. Math. Anal. Appl.
0022-247X,
258
, pp.
171
182
.
30.
Shields
,
D. N.
, 1994, “
Observers for Singular Discrete-Time Descriptor Systems
,”
Control and Comput.
0730-9538,
22
, pp.
58
64
.
31.
Eletro-Craft Corporation
, 1978, DC Motors, Speed Controls, Servo Systems: an Engineering Handbook, Hopkins, MN.
You do not currently have access to this content.