To improve controlled performance and expand gain-scheduling control capability, we propose a switching control approach of linear fractional transformation parameter-dependent systems using multiple Lyapunov functions combined with online control techniques. At each switching instant, a gain-scheduled controller working for the next switching interval will be designed online. The switching control synthesis condition is formulated as linear matrix inequalities and can be solved efficiently, upon which the controller will be constructed. The online switching control scheme is demonstrated using an uninhabited combat aerospace vehicle problem.
1.
Rugh
, W. J.
, 1991, “Analytical Framework for Gain Scheduling
,” IEEE Control Syst. Mag.
0272-1708, 11
(1
), pp. 79
–84
.2.
Shamma
, J. S.
, and Athans
, M.
, 1990, “Analysis of Gain Scheduled Control for Nonlinear Plants
,” IEEE Trans. Autom. Control
0018-9286, 35
(8
), pp. 898
–907
.3.
Rugh
, W. J.
, and Shamma
, J. S.
, 2000, “Research on Gain Scheduling
,” Automatica
0005-1098, 36
(10
), pp. 1401
–1425
.4.
Packard
, A. K.
, 1994, “Gain Scheduling Via Linear Fractional Transformations
,” Syst. Control Lett.
0167-6911, 22
(2
), pp. 79
–92
.5.
Apkarian
, P.
, and Gahinet
, P.
, 1995, “A Convex Characterization of Gain-Scheduled H∞ Controllers
,” IEEE Trans. Autom. Control
0018-9286, 40
(5
), pp. 853
–864
.6.
Liberzon
, D.
, 2003, Switching in Systems and Control
, Birkhauser
, Boston, MA
.7.
DeCarlo
, R. A.
, Branicky
, M. S.
, Pettersson
, S.
, and Lennartson
, B.
, 2000, “Perspectives and Results on the Stability and Stabilizability of Hybrid Systems
,” Proc. IEEE
0018-9219, 88
(7
), pp. 1069
–1082
.8.
Branicky
, M. S.
, 1998, “Multiple Lyapunov Functions and Other Analysis Tools for Switched and Hybrid Systems
,” IEEE Trans. Autom. Control
0018-9286, 43
(4
), pp. 475
–482
.9.
Ye
, H.
, Michel
, A. N.
, and Hou
, L.
, 1998, “Stability Theory for Hybrid Dynamical Systems
,” IEEE Trans. Autom. Control
0018-9286, 43
(4
), pp. 461
–474
.10.
El-Farra
, N. H.
, Mhaskar
, P.
, and Christofides
, P. D.
, 2005, “Output Feedback Control of Switched Nonlinear Systems Using Multiple Lyapunov Functions
,” Syst. Control Lett.
0167-6911, 54
(12
), pp. 1163
–1182
.11.
Mhaskar
, P.
, El-Farra
, N. H.
, and Christofides
, P. D.
, 2005, “Robust Hybrid Predictive Control of Nonlinear Systems
,” Automatica
, 41
(2
), pp. 209
–217
. 0005-109812.
Mhaskar
, P.
, El-Farra
, N. H.
, and Christofides
, P. D.
, 2005, “Predictive Control of Switched Nonlinear Systems With Scheduled Mode Transitions
,” IEEE Trans. Autom. Control
0018-9286, 50
(11
), pp. 1670
–1680
.13.
Lim
, S.
, 1999, “Analysis and Control of Linear Parameter-Varying Systems
,” Ph.D. thesis, Stanford University, Stanford, CA.14.
Lu
, B.
, and Wu
, F.
, 2004, “Switched LPV Control Designs Using Multiple Parameter-Dependent Lyapunov Functions
,” Automatica
, 40
(11
), pp. 1973
–1980
. 0005-109815.
Gahinet
, P.
, and Apkarian
, P.
, 1994, “A Linear Matrix Inequality Approach to H∞ Control
,” Int. J. Robust Nonlinear Control
1049-8923, 4
(4
), pp. 421
–448
.16.
Lu
, B.
, Wu
, F.
, and Kim
, K.
, 2006, “Switching LPV Control of an F-16 Aircraft Via Controller State Reset
,” IEEE Trans. Control Syst. Technol.
1063-6536, 14
(2
), pp. 267
–277
.17.
Wu
, F.
, 2001, “A Generalized LPV System Analysis and Control Synthesis Framework
,” Int. J. Control
0020-7179, 74
(7
), pp. 745
–759
.18.
Copyright © 2009
by American Society of Mechanical Engineers
You do not currently have access to this content.