A strategy to remove energy from finite-dimensional elastic systems is presented. The strategy is based on the cyclic application and removal of constraints that effectively remove and restore degrees of freedom of the system. In general, application of a constraint removes kinetic energy from the system, while removal of the constraint resets the system for a new cycle of constraint application. Conditions that lead to a net loss in kinetic energy per cycle and bounds on the amount of energy removed are presented. In linear systems, these bounds are related to the modes of the system in its two states, namely, with and without constraints. It is shown that energy removal is always possible, even using a random switching schedule, except in one scenario, when energy is trapped in modes that span an invariant subspace with special orthogonality properties. Applications to nonlinear systems are discussed. Examples illustrate the process of energy removal in both linear and nonlinear systems.

1.
Lieber
,
P.
, and
Jensen
,
D. P.
, 1945, “
An Acceration Damper: Development, Design, and Some Applications
,”
Trans. ASME
0097-6822,
67
, pp.
523
530
.
2.
Grubin
,
C.
, 1956, “
On the Theory of Acceleration Damper
,”
ASME J. Appl. Mech.
0021-8936,
23
, pp.
373
378
.
3.
Warburton
,
G. B.
, 1957, “
On the Theory of Acceleration Damper
,”
ASME J. Appl. Mech.
0021-8936,
24
, pp.
322
324
.
4.
Masri
,
S. F.
, 1969, “
Analytical and Experimental Studies of Multiple-Unit Impact Dampers
,”
J. Acoust. Soc. Am.
0001-4966,
45
(
5
), pp.
1111
1117
.
5.
Masri
,
S. F.
, 1973, “
Steady State Response of a Multi-Degree System With an Impact Damper
,”
ASME J. Appl. Mech.
0021-8936,
40
(
1
), pp.
127
132
.
6.
Nigm
,
M. M.
, and
Shabana
,
A. A.
, 1983, “
Effect of an Impact Damper on a Multi-Degree of Freedom System
,”
J. Sound Vib.
0022-460X,
89
(
4
), pp.
541
557
.
7.
Li
,
K.
, and
Darby
,
A. P.
, 2006, “
Experiments on the Effect of an Impact Damper on a Multiple-Degree-of-Freedom System
,”
J. Vib. Control
1077-5463,
12
(
5
), pp.
445
464
.
8.
Masri
,
S. F.
, and
Kahyai
,
K.
, 1974, “
Steady-State Motion of a Plate With a Discontinuous Mass
,”
Int. J. Non-Linear Mech.
0020-7462,
9
, pp.
451
462
.
9.
Roy
,
R. K.
,
Rocke
,
R. D.
, and
Foster
,
J. E.
, 1975, “
The Application of Impact Dampers to Continuous Systems
,”
ASME J. Eng. Ind.
0022-0817,
97
(
4
), pp.
1317
1324
.
10.
Issa
,
J.
,
Mukherjee
,
R.
,
Diaz
,
A. R.
, and
Shaw
,
S. W.
, 2008, “
Modal Disparity and Its Experimental Verification
,”
J. Sound Vib.
0022-460X,
311
(
3–5
), pp.
1465
1475
.
11.
Brogliato
,
B.
, 1999,
Nonsmooth Mechanics: Models, Dynamics and Controls
,
Springer Verlag
,
New York
.
12.
Greenwood
,
D. T.
, 1988,
Principles of Dynamics
, 2nd ed.,
Prentice-Hall
,
Englewood Cliffs, New Jersey
.
13.
Koveceses
,
J.
,
Najafabadi
,
S. A. M.
, and
Angeles
,
J.
, 2007, “
Energy Analysis and Decoupling in Three-Dimensional Impacts of Multibody Systems
,”
ASME J. Appl. Mech.
0021-8936,
74
, pp.
845
851
.
14.
Horn
,
R. A.
, and
Johnson
,
C. R.
, 1985,
Matrix Analysis
,
Cambridge University Press
,
New York
, p.
24
.
15.
Diaz
,
A. R.
, and
Mukherjee
,
R.
, 2006, “
Modal Disparity Enhancement Through Optimal Insertion of Non-Structural Masses
,”
Struct. Multidiscip. Optim.
1615-147X,
31
(
1
), pp.
1
7
.
16.
Diaz
,
A. R.
, and
Mukherjee
,
R.
, 2006, “
A Toplology Optimization Problem in Control of Structures Using Modal Disparity
,”
ASME J. Mech. Des.
1050-0472,
128
, pp.
536
541
.
You do not currently have access to this content.