A new anomaly detection scheme based on growing structure multiple model system (GSMMS) is proposed in this paper to detect and quantify the effects of anomalies. The GSMMS algorithm combines the advantages of growing self-organizing networks with efficient local model parameter estimation into an integrated framework for modeling and identification of general nonlinear dynamic systems. The identified model then serves as a foundation for building an effective anomaly detection and fault diagnosis system. By utilizing the information about system operation region provided by the GSMMS, the residual errors can be analyzed locally within each operation region. This local decision making scheme can accommodate for unequally distributed residual errors across different operational regions. The performance of the newly proposed method is evaluated through anomaly detection and quantification in an electronically controlled throttle system, which is simulated using a high-fidelity engine simulation software package provided by a major automotive manufacturer for control system development.

1.
Hofmeyr
,
S.
, and
Forrest
,
S.
, 2000, “
Architecture for an Artificial Immune System
,”
Evol. Comput.
1063-6560,
8
(
4
), pp.
443
73
.
2.
Anderson
,
J. P.
, 1980, “
Computer Security Threat Monitoring and Surveillance
,” James P. Anderson Company, Technical Report.
3.
Denning
,
D.
, 1987, “
An Intrusion Detection Model
,”
IEEE Trans. Software Eng.
0098-5589,
SE-13
(
2
), pp.
222
232
.
4.
Lunt
,
T. F.
, 1993, “
Survey of Intrusion Detection Techniques
,”
Comput. Secur.
0167-4048,
12
(
4
), pp.
405
418
.
5.
Haykin
,
S. S.
, 1999,
Neural Networks: A Comprehensive Foundation
, 2nd ed.,
Prentice-Hall
,
Upper Saddle River, NJ.
6.
Cho
,
K. B.
, and
Wang
,
B. H.
, 1996, “
Radial Basis Function Based Adaptive Fuzzy Systems and Their Applications to System Identification and Prediction
,”
Fuzzy Sets Syst.
0165-0114,
83
(
3
), pp.
325
339
.
7.
Leung
,
H.
,
Lo
,
T.
, and
Wang
,
S.
, 2001, “
Prediction of Noisy Chaotic Time Series Using an Optimal Radial Basis Function Neural Network
,”
IEEE Trans. Neural Netw.
1045-9227,
12
(
5
), pp.
1163
1172
.
8.
Connor
,
J. T.
,
Martin
,
R. D.
, and
Atlas
,
L.
, 1994, “
Recurrent Neural Networks and Robust Time Series Prediction
,”
IEEE Trans. Neural Netw.
1045-9227,
5
(
2
), pp.
240
253
.
9.
Han
,
M.
,
Xi
,
J.
,
Xu
,
S.
, and
Yin
,
F. -L.
, 2004, “
Prediction of Chaotic Time Series Based on the Recurrent Predictor Neural Network
,”
IEEE Trans. Signal Process.
1053-587X,
52
(
12
), pp.
3409
3416
.
10.
Principe
,
J. C.
,
Wang
,
L.
, and
Motter
,
M. A.
, 1998, “
Local Dynamic Modeling With Self-Organizing Maps and Applications to Nonlinear System Identification and Control
,”
Proc. IEEE
0018-9219,
86
(
11
), pp.
2240
2258
.
11.
Patton
,
R.
,
Frank
,
P. M.
, and
Clark
,
R. N.
, 1996,
Issues Of Fault Diagnosis For Dynamic Systems
,
Springer-Verlag
,
New York
.
12.
Takagi
,
T.
, and
Sugeno
,
M.
, 1985, “
Fuzzy Identification of Systems and Its Applications to Modeling and Control
,”
IEEE Trans. Syst. Man Cybern.
0018-9472,
SMC-15
(
1
), pp.
116
132
.
13.
Tzafestas
,
S.
, and
Zikidis
,
K.
, 2001, “
NeuroFAST: On-Line Neuro-Fuzzy Art-Based Structure and Parameter Learning TSK Model
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
31
(
5
), pp.
797
802
.
14.
Johansen
,
T.
, and
Foss
,
B.
, 1993, “
Constructing NARMAX Models Using ARMAX Models
,”
Int. J. Control
0020-7179,
58
(
5
), pp.
1125
53
.
15.
Johansen
,
T.
, and
Foss
,
B.
, 1995, “
Identification of Nonlinear System Structure and Parameters Using Regime Decomposition
,”
Automatica
0005-1098,
31
(
2
), pp.
321
6
.
16.
Kohonen
,
T.
, 1995,
Self-Organizing Maps
,
Springer-Verlag
,
Berlin, NY
.
17.
Barreto
,
G.
, and
Araujo
,
A.
, 2004, “
Identification and Control of Dynamical Systems Using the Self-Organizing Map
,”
IEEE Trans. Neural Netw.
1045-9227,
15
(
5
), pp.
1244
59
.
18.
Ge
,
M.
,
Chin
,
M. -S.
, and
Wang
,
Q. -G.
, 1999, “
An Extended Self-Organizing Map for Nonlinear System Identification
,”
Proceedings of the 1999 Conference on Decision and Control
, IEEE, Phoenix, AZ, Dec. 7–10, Vol.
1
, pp.
1065
70
.
19.
Fritzke
,
B.
, 1995, “
A Growing Neural Gas Network Learns Topologies
,”
Advances in Neural Information Processing Systems
,
MIT
,
Cambridge, MA
, Vol.
7
, pp.
625
632
.
20.
Fritzke
,
B.
, 1994, “
Growing Cell Structures—A Self-Organizing Network for Unsupervised and Supervised Learning
,”
Neural Networks
0893-6080,
7
(
9
), pp.
1441
1460
.
21.
Alahakoon
,
D.
,
Halgamuge
,
S. K.
, and
Srinivasan
,
B.
, 2000, “
Dynamic Self-Organizing Maps With Controlled Growth for Knowledge Discovery
,”
IEEE Trans. Neural Netw.
1045-9227,
11
(
3
), pp.
601
614
.
22.
Fritzke
,
B.
, 1995, “
Incremental Learning of Local Linear Mappings
,”
Proceedings of the International Conference on Artificial Neural Networks, ICANN ‘95
, Oct. 9–13,
EC2 & Cie
,
Paris, France
, Vol. 1, pp.
217
22
.
23.
Martinetz
,
T. M.
,
Berkovich
,
S. G.
, and
Schulten
,
K. J.
, 1993, “
‘Neural-Gas’ Network for Vector Quantization and Its Application to Time-Series Prediction
,”
IEEE Trans. Neural Netw.
1045-9227,
4
(
4
), pp.
558
569
.
24.
Sedgewick
,
R.
, 1995,
Algorithms in C++, Part 5: Graph Algorithms
,
Addison-Wesley
,
London
.
25.
Ikonen
,
E.
, and
Najim
,
K.
, 2002,
Advanced Process Identification and Control
,
Marcel Dekker
,
New York
.
26.
Martinetz
,
T.
, and
Schulten
,
K.
, 1991, “
A ‘Neural-Gas’ Network Learns Topologies
,”
Artificial Neural Networks, Proceedings of the 1991 International Conference, ICANN-91
, Jun. 24–28,
North-Holland
,
Espoo, Finland
, pp.
397
402
.
27.
Martinetz
,
T.
, and
Schulten
,
K.
, 1994, “
Topology Representing Networks
,”
Neural Networks
0893-6080,
7
(
3
), pp.
507
522
.
28.
Montgomery
,
D. C.
, 2001,
Introduction to Statistical Quality Control
, 4th ed.,
Wiley
,
New York
.
29.
Babuska
,
R.
, 1998,
Fuzzy Modeling for Control
,
Kluwer Academic
,
Boston
.
30.
Norgaard
,
M.
,
Ravn
,
O.
,
Poulsen
,
N.
, and
Hansen
,
L.
, 2000,
Neural Networks for Modeling and Control of Dynamic Systems
,
Springer
,
London
.
31.
Ljung
,
L.
, 1987,
System Identification: Theory for the Users
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
32.
Zivkovic
,
Z.
, and
van der Heijden
,
F.
, 2004, “
Recursive Unsupervised Learning of Finite Mixture Models
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828,
26
(
5
), pp.
651
6
.
You do not currently have access to this content.