The control system for fuel cell gas turbine hybrid power plants plays an important role in achieving synergistic operation of subsystems, improving reliability of operation, and reducing frequency of maintenance and downtime. In this paper, we discuss development of advanced control algorithms for a system composed of an internally reforming solid oxide fuel cell coupled with an indirectly heated Brayton cycle gas turbine. In high temperature fuel cells it is critical to closely maintain fuel cell temperatures and to provide sufficient electrochemical reacting species to ensure system durability. The control objective explored here is focused on maintaining the system power output, temperature constraints, and target fuel utilization, in the presence of ambient temperature and fuel composition perturbations. The present work details the development of a centralized linear quadratic regulator (LQR) including state estimation via Kalman filtering. The controller is augmented by local turbine speed control and integral system power control. Relative gain array analysis has indicated that independent control loops of the hybrid system are coupled at time scales greater than 1 s. The objective of the paper is to quantify the performance of a centralized LQR in rejecting fuel and ambient temperature disturbances compared with a previously developed decentralized controller. Results indicate that both the LQR and decentralized controller can well maintain the system power to the disturbances. However, the LQR ensures better maintenance of the fuel cell stack voltage and temperature that can improve high temperature fuel cell system durability.

1.
Williams
,
M. C.
,
Strakey
,
J.
, and
Sudoval
,
W. U. S.
, 2006, “
DOE Fossil Energy Fuel Cells Program
,”
J. Power Sources
0378-7753,
159
(
2
), pp.
1241
1247
.
2.
Williams
,
M. C.
,
Strakey
,
J. P.
, and
Surdoval
,
W. A.
, 2005, “
The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program
,”
J. Power Sources
0378-7753,
143
(
1–2
), pp.
191
196
.
3.
Williams
,
M. C.
,
Strakey
,
J. P.
, and
Singhal
,
S. C. U. S.
, 2004, “
Distributed Generation Fuel Cell Program
,”
J. Power Sources
0378-7753,
131
(
1–2
), pp.
79
85
.
4.
Stiller
,
C.
,
Thorud
,
B.
,
Bolland
,
O.
,
Kandepu
,
R.
, and
Imsland
,
L.
, 2006, “
Control Strategy for a Solid Oxide Fuel Cell and Gas Turbine Hybrid System
,”
J. Power Sources
0378-7753,
158
(
1
), pp.
303
315
.
5.
Mueller
,
F.
,
Jabbari
,
F.
,
Brouwer
,
J.
,
Roberts
,
R.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2006, “
Control Design for A Bottoming Solid Oxide Fuel Cell Gas Turbine Hybrid System
,”
The 4th International Conference on Fuel Cell Science, Engineering and Technology
,,
Irvine, CA
, June 19–21,
ASME
.
6.
Kandepu
,
R.
,
Imsland
,
L.
,
Foss
,
B. A.
,
Stiller
,
C.
,
Thorud
,
B.
, and
Bolland
,
O.
, 2007, “
Modeling and Control of a SOFC-GT-Based Autonomous Power System
,”
Energy
0360-5442,
32
(
4
), pp.
407
417
.
7.
Inui
,
Y.
,
Ito
,
N.
,
Nakajima
,
T.
, and
Urata
,
A.
, 2006, “
Analytical Investigation on Cell Temperature Control Method of Planar Solid Oxide Fuel Cell
,”
Energy Convers. Manage.
0196-8904,
47
(
15–16
), pp.
2319
2328
.
8.
Ferrari
,
M. L.
,
Magistri
,
L.
,
Traverso
,
A.
,
Massardo
,
A. F.
, 2005, “
Control System for Solid Oxide Fuel Cell Hybrid Systems
,”
ASME Turbo Expo 2005: Power for Land, Sea and Air
,
ASME
,
Renoe-Tahoe, NV
, pp.
1
9
.
9.
Selimovic
,
A.
,
Kemm
,
M.
,
Torisson
,
T.
, and
Assadi
,
M.
, 2005, “
Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
0378-7753,
145
(
2
), pp.
463
469
.
10.
Dicks
,
A. L.
, 1998, “
Advances in Catalyst for Internal Reformation in High Temperature Fuel Cells
,”
J. Power Sources
0378-7753,
71
, pp.
111
122
.
11.
Roberts
,
R.
,
Brouwer
,
J.
,
Jabbari
,
F.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
, 2006, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable Versus Fixed Speed Gas Turbine Operation
,”
J. Power Sources
0378-7753,
161
(
1
), pp.
484
491
.
12.
Skogestad
,
S.
, and
Postlethwaite
,
L.
, 1996,
Mutivariable Feedback Control Analysis and Design
,
Wiley
,
New York
.
13.
Pukrushpan
,
T. J.
,
Stefanopoulou
,
G. A.
, and
Huei
,
P.
, 2005,
Control of Fuel Cell Power Systems: Principles, Modeling, Analysis, and Feedback Design
,
J. M.
Grimble
and
A. M.
Johnson
, eds.,
Springer
,
London
.
14.
Kishor
,
N.
,
Singh
,
S. P.
, and
Raghuvanshi
,
A. S.
, 2006, “
Dynamic Simulations of Hydro Turbine and Its State Estimation Based LQ Control
,”
Energy Convers. Manage.
0196-8904,
47
(
18–19
), pp.
3119
3137
.
15.
Ko
,
H. -S.
,
Jatskevich
,
J.
,
Dumont
,
G.
, and
Yoon
,
G. -G.
, 2008, “
An Advanced LMI-Based-LQR Design for Voltage Control of Grid-Connected Wind Farm
,”
Electr. Power Syst. Res.
0378-7796,
78
(
4
), pp.
539
546
.
16.
Ekelund
,
T.
, 2000, “
Yaw Control for Reduction of Structural Dynamic Loads in Wind Turbines
,”
J. Wind. Eng. Ind. Aerodyn.
0167-6105,
85
(
3
), pp.
241
262
.
17.
Shen
,
J. -Y.
, and
Fabien
,
B. C.
, 2002, “
Optimal Control of a Flywheel Energy Storage System With a Radial Flux Hybrid Magnetic Bearing
,”
J. Franklin Inst.
0016-0032,
339
(
2
), pp.
189
210
.
18.
Varigonda
,
S.
,
Kamat
,
M.
, and
Bortoff
,
S. A.
, 2006, “
H-Infinity Control Design for a Stationary Fuel Cell Power Plant
,”
American Control Conference
, Mineapolis, MN, Jun. 14–16.
19.
Pukrushpan
,
J.
,
Stefanopoulou
,
A.
,
Varigonda
,
S.
,
Eborn
,
J.
, and
Haugstetter
,
C.
, 2006, “
Control-Oriented Model of Fuel Processor for Hydrogen Generation in Fuel Cell Applications
,”
Control Eng. Pract.
0967-0661,
14
(
3
), pp.
277
293
.
20.
Jurado
,
F.
, 2005, “
Robust Control for Fuel Cell-Microturbine Hybrid Power Plant Using Biomass
,”
Energy
0360-5442,
30
(
10
), pp.
1711
1727
.
21.
Mueller
,
F.
,
Brouwer
,
J.
,
Jabbari
,
F.
, and
Samuelsen
,
S.
, 2006, “
Dynamic Simulation of an Integrated Solid Oxide Fuel Cell System Including Current-Based Fuel Flow Control
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
2
), pp.
144
155
.
22.
Roberts
,
R.
, and
Brouwer
,
J.
, 2006, “
Dynamic Simulation of a Pressurized 220 kW Solid Oxide Fuel-Cell-Gas-Turbine Hybrid System: Modeled Performance Compared to Measured Results
,”
ASME J. Fuel Cell Sci. Technol.
1550-624X,
3
(
1
), pp.
18
25
.
23.
Kuniba
,
Y.
, 2007,
Development and Analysis of Load Following SOFC/GT Hybrid System Control Strategies for Commercial Building Applications
,
University of California, Irvine
,
Irvine, CA
.
You do not currently have access to this content.