The paper presents a fuzzy static output feedback controller design approach for vehicle electrohydraulic active suspensions based on Takagi–Sugeno (T–S) fuzzy modeling technique. The T–S fuzzy model is first applied to represent the nonlinear dynamics of an electrohydraulic suspension. Then, the fuzzy static output feedback controller is designed for the obtained T–S fuzzy model to optimize the H performance of ride comfort through the parallel distributed compensation scheme. The sufficient conditions for the existence of such a controller are derived in terms of linear matrix inequalities (LMIs) with an equality constraint. A computational algorithm is presented to convert the equality constraint into a LMI so that the controller gains can be obtained by solving a minimization problem with LMI constraints. To validate the effectiveness of the proposed approach, two kinds of static output feedback controllers, which use suspension deflection and sprung mass velocity, and suspension deflection only, respectively, as feedback signals, are designed. It is confirmed by the simulations that the designed controllers can achieve good suspension performance similar to that of the active suspension with optimal skyhook damper.

1.
Hrovat
,
D.
, 1997, “
Survey of Advanced Suspension Developments and Related Optimal Control Applications
,”
Automatica
0005-1098,
33
(
10
), pp.
1781
1817
.
2.
Williams
,
R. A.
, 1997, “
Automotive Active Suspensions
,”
Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.)
0954-4070,
211
, pp.
415
444
.
3.
Alleyne
,
A.
, and
Hedrick
,
J. K.
, 1995, “
Nonlinear Adaptive Control of Active Suspensions
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
3
(
1
), pp.
94
101
.
4.
Tuan
,
H. D.
,
Ono
,
E.
,
Apkarian
,
P.
, and
Hosoe
,
S.
, 2001, “
Nonlinear H∞ Control for an Integrated Suspension System via Parameterized Linear Matrix Inequality Characterizations
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
9
(
1
), pp.
175
185
.
5.
Chantranuwathana
,
S.
, and
Peng
,
H.
, 2004, “
Adaptive Robust Force Control for Vehicle Active Suspensions
,”
Int. J. Adapt. Control Signal Process.
0890-6327,
18
(
2
), pp.
83
102
.
6.
Zhang
,
Y.
, and
Alleyne
,
A.
, 2005, “
A Practical and Effective Approach to Active Suspension Control
,”
Veh. Syst. Dyn.
0042-3114,
43
(
5
), pp.
305
330
.
7.
Huang
,
S. -J.
, and
Chen
,
H. -Y.
, 2006, “
Adaptive Sliding Controller With Self-Tuning Fuzzy Compensation for Vehicles Suspension Control
,”
Mechatronics
0957-4158,
16
, pp.
607
622
.
8.
Chen
,
P. C.
, and
Huang
,
A. C.
, 2006, “
Adaptive Sliding Control of Active Suspension Systems With Uncertain Hydraulic Actuator Dynamics
,”
Veh. Syst. Dyn.
0042-3114,
44
(
5
), pp.
357
368
.
9.
Kaddissi
,
C.
,
Kenne
,
J. -P.
, and
Saad
,
M.
, 2007, “
Identification and Real-Time Control of an Electrohydraulic Servo System Based On Nonlinear Backstepping
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
12
(
1
), pp.
12
22
.
10.
Alleyne
,
A.
, and
Liu
,
R.
, 1999, “
On the Limitations of Force Tracking Control for Hydraulic Servosystems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
121
(
2
), pp.
184
190
.
11.
Alleyne
,
A.
,
Neuhaus
,
P. D.
, and
Hedrick
,
J. K.
, 1993, “
Application of Nonlinear Control Theory to Electronically Controlled Suspensions
,”
Veh. Syst. Dyn.
0042-3114,
22
(
5
), pp.
309
320
.
12.
Alleyne
,
A.
, and
Liu
,
R.
, 2000, “
A Simplified Approach to Force Control for Electro-Hydraulic Systems
,”
Control Eng. Pract.
0967-0661,
8
(
12
), pp.
1347
1356
.
13.
Alleyne
,
A. G.
, and
Liu
,
R.
, 2000, “
Systematic Control of a Class of Nonlinear Systems With Application to Electrohydraulic Cylinder Pressure Control
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
8
(
4
), pp.
623
634
.
14.
Thompson
,
A. G.
, and
Davis
,
B. R.
, 2001, “
Force Control in Electrohydraulic Active Suspensions Revisited
,”
Veh. Syst. Dyn.
0042-3114,
35
(
3
), pp.
217
222
.
15.
Tseng
,
C. -S.
,
Chen
,
B. -S.
, and
Uang
,
H. -J.
, 2001, “
Fuzzy Tracking Control Design for Nonlinear Dynamic Systems via T-S Fuzzy Model
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
9
(
3
), pp.
381
392
.
16.
Du
,
H.
,
Lam
,
J.
, and
Sze
,
K. Y.
, 2003, “
Non-Fragile Output Feedback H∞ Vehicle Suspension Control Using Genetic Algorithm
,”
Eng. Applic. Artif. Intell.
0952-1976,
16
(
7-8
), pp.
667
680
.
17.
Feng
,
G.
, 2006, “
A Survey on Analysis and Design of Model-Based Fuzzy Control Systems
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
14
(
5
), pp.
676
697
.
18.
Tanaka
,
K.
, and
Wang
,
H. O.
, 2001,
Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach
,
Wiley
,
New York
.
19.
Chen
,
B. -S.
,
Tseng
,
C. -S.
, and
Uang
,
H. -J.
, 1999, “
Robustness Design of Nonlinear Dynamic Systems via Fuzzy Linear Control
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
7
, pp.
571
585
.
20.
Kim
,
J. H.
, and
Jabbari
,
F.
, 2002, “
Actuator Saturation and Control Design for Buildings Under Seismic Excitation
,”
J. Eng. Mech.
0733-9399,
128
(
4
), pp.
403
412
.
21.
Tseng
,
C. -S.
, and
Chen
,
B. -S.
, 2006, “
H∞ Fuzzy Control Design for Nonlinear Systems Subject to Actuator Saturation
,”
Proceedings of 2006 IEEE International Conference on Fuzzy Systems
, Vancouver, Canada, pp.
783
788
.
22.
Chen
,
B. -S.
,
Chen
,
Y. -Y.
, and
Lin
,
C. -L.
, 2002, “
Nonlinear Fuzzy H∞ Guidance Law With Saturation of Actuators Against Maneuvering Targets
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
10
(
6
), pp.
769
779
.
23.
Zhou
,
K.
, and
Khargonekar
,
P. P.
, 1988, “
An Algebraic Riccati Equation Approach to H∞ Optimization
,”
Syst. Control Lett.
0167-6911,
11
, pp.
85
91
.
24.
Boyd
,
S.
,
El Ghaoui
,
L.
,
Feron
,
E.
, and
Balakrishnan
,
V.
, 1994,
Linear Matrix Inequalities in System and Control Theory
,
SIAM
,
Philadelphia, PA
.
25.
Cao
,
Y. -Y.
, and
Lin
,
Z.
, 2003, “
Robust Stability Analysis and Fuzzy-Scheduling Control for Nonlinear Systems Subject to Actuator Saturation
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
11
(
1
), pp.
57
67
.
26.
Ho
,
D. W. C.
, and
Niu
,
Y.
, 2007, “
Robust Fuzzy Design for Nonlinear Uncertain Stochastic Systems via Sliding-Mode Control
,”
IEEE Trans. Fuzzy Syst.
1063-6706,
15
(
3
), pp.
350
358
.
27.
Gao
,
H.
,
Lam
,
J.
, and
Wang
,
C.
, 2006, “
Multi-Objective Control of Vehicle Active Suspension Systems via Load-Dependent Controllers
,”
J. Sound Vibrat.
,
290
, pp.
654
675
. 0022-460X
28.
Syrmos
,
V. L.
,
Abdallah
,
C. T.
,
Dorato
,
P.
, and
Grigoriadis
,
K.
, 1997, “
Static Output Feedback—A Survey
,”
Automatica
0005-1098,
33
(
2
), pp.
125
137
.
You do not currently have access to this content.