The problem of stabilization of uncertain systems plays a broad and fundamental role in robust control theory. The paper examines a boundedness theorem for a class of uncertain systems characterized as having a decreasing Lyapunov function in a ringlike region. It is a systematic study on stability that embraces both the transient and steady analysis, covering such aspects as the maximum overshoot of the system state, the stability region and the exponential convergence rate. The emphasis throughout is on deriving dominant time constants and explicit time expressions for a state to reach an invariant set. The central theorem provides a complete treatment of the time evolution of trajectories depending on the specific compact set of initial conditions. Toward this end, the comparison lemma along with a particular Riccati differential equation are essential and conclusive. The scope of questions addressed in the paper, the uniformity of their treatment, the novelty of the proposed theorem, and the obtained results make it very useful with respect to other works on the problem of robust nonlinear control.

References

1.
Khalil
,
H. K.
,
1992
,
Nonlinear Systems
,
Macmillan
,
New York
.
2.
Dawson
,
D. M.
,
Qu
,
Z.
,
Lewis
,
F. L.
, and
Dorsey
,
J. F.
,
1990
, “
Robust Control for the Tracking of Robot Motion
,”
Int. J. Contr.
,
52
(
3
), pp.
581
595
.10.1080/00207179008953554
3.
Qu
,
Z.
,
1998
,
Robust Control of Nonlinear Uncertain Systems
(Wiley Series in Nonlinear Science),
John Wiley and Sons
,
New York
.
4.
Corless
,
M.
, and
Leitmann
,
G.
,
1981
, “
Continuous State Feedback Guaranteeing Uniform Ultimate Boundness for Uncertain Dynamics Systems
,”
IEEE Trans. Auto. Contr.
,
26
, pp.
1139
114
3.10.1109/TAC.1981.1102785
5.
Hinrichsen
,
D.
,
Plischke
,
E.
, and
Pritchard
,
A. J.
,
2001
, “
Liapunov and Riccati Equations for Practical Stability
,”
Proc. 6th European Control Conference
,
Porto, Portugal
, pp.
2883
2888
.
6.
Hinrichsen
,
D.
,
Plischke
,
E.
, and
Wirth
,
F.
,
2002
, “
State Feedback Stabilization With Guaranteed Transient Bounds
,”
Proc. Mathematical Theory of Networks and Systems
,
Notre Dame, IN
.
7.
Qu
,
Z.
,
Dorsey
,
J. F.
,
Zhang
,
X.
, and
Dawson
,
D. M.
,
1991
, “
Robust Control of Robots by Computed Torque Law
,”
Syst. Contr. Lett.
,
16
, pp.
25
32
.10.1016/0167-6911(91)90025-A
8.
Qu
,
Z.
, and
Dorsey
,
J. F.
,
1991
, “
Robust PID Control of Robots
,”
Int. J. Robotic. Auto.
,
6
(
4
), pp.
228
235
.
9.
Qu
,
Z.
, and
Dawson
,
D. M.
,
1996
,
Robust Tracking Control of Robot Manipulators
,
IEEE Press
, New York.
10.
Rouche
,
N.
,
Habets
,
P.
, and
Laloy
,
M.
,
1977
,
Stability Theory by Liapunov's Direct Method
,
Springer-Verlag
,
New York
.
11.
Matrosov
,
V. M.
,
1962
, “
On the Stability of Motion
,”
J. App. Math. Mech.
,
26
, pp.
1337
1353
.10.1016/0021-8928(62)90010-2
12.
Rouche
,
N.
, and
Mawhin
,
J.
,
1980
,
Ordinary Differential Equations II: Stability and Periodical Solutions
,
Pitman Publishing Ltd.
,
London
.
13.
Slotine
,
J.-J.
, and
Li
,
W.
,
1990
,
Applied Nonlinear Control
, 1st ed.,
Prentice Hall
, Englewood Cliffs, NJ.
14.
Kelly
,
R.
,
Santibanez
,
V.
, and
Loria
,
A.
,
2005
,
Control of Robot Manipulators in Joint Space
,
Springer-Verlag
, London.
15.
Ghorbel
,
F.
,
Srivinasan
,
B.
, and
Spong
,
M. W.
,
1998
, “
On the Uniform Boundedness of the Inertia Matrix of Serial Robot
,”
J. Robot. Syst.
,
15
(
1
), pp.
17
28
.10.1002/(SICI)1097-4563(199812)15:1<17::AID-ROB2>3.0.CO;2-V
16.
Mulero-Martínez
,
J. I.
,
2007
, “
Functions Bandlimited in Frequency are Free of the Curse of Dimensionality
,”
Neurocomputing
,
70
(
7–9
), pp.
1439
1452
.10.1016/j.neucom.2006.05.010
17.
Silvester
,
J. R.
,
2000
, “
Determinants of Block Matrices
,”
Math. Gaz.
,
84
(
501
), pp.
460
467
.10.2307/3620776
18.
Horn
,
R. A.
, and
Johnson
,
C. R.
,
1999
,
Matrix Analysis
,
Cambridge University Press
, Cambridge, UK.
You do not currently have access to this content.