This paper proposes a novel computationally efficient dynamics modeling approach for down-hole well drilling system. The existing drilling modeling methods are either computationally intensive such as those using finite element method (FEM) or weak in fidelity for complex geometry such as those using transfer matrix method (TMM). To take advantage of the benefits of FEM and TMM and avoid their drawbacks, this paper presents a new hybrid method integrating both of the aforementioned modeling approaches, enabled by the unique structural geometry of the drilling system. The new method is then applied to the down-hole well drilling system modeling, incorporating the dynamics of top drive, drill-string, bottom-hole-assembly (BHA), and bit–rock interaction. The hybrid integration approaches for both the axial and torsional dimensions are explicitly derived, and we also give directions on how to resolve those for flexural dimension. To this end, numerical simulation results are presented to demonstrate the effectiveness of the proposed hybrid modeling approach.

References

1.
Detournay
,
E.
,
Richard
,
T.
, and
Shepherd
,
M.
,
2008
, “
Drilling Response of Drag Bits: Theory and Experiment
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
8
), pp.
1347
1360
.
2.
Pogorelov
,
D.
,
Mikheev
,
G.
,
Lysikov
,
N.
,
Ring
,
L.
,
Gandikota
,
R.
, and
Abedrabbo
,
N.
,
2012
, “
A Multibody System Approach to Drill String Dynamics Modeling
,”
ASME
Paper No. ESDA2012-82316.
3.
Pabon
,
J.
,
Wicks
,
N.
,
Chang
,
Y.
,
Dow
,
B.
, and
Harmer
,
R.
,
2010
, “
Modeling Transient Vibrations While Drilling Using a Finite Rigid Body Approach
,”
SPE Deepwater Drilling and Completions Conference
, Galveston, TX, Oct. 5–6,
SPE
Paper No. SPE-137754-MShttps://doi.org/10.2118/137754-MS.
4.
Han
,
J.
,
Kim
,
Y.
, and
Karkoub
,
M.
,
2013
, “
Modeling of Wave Propagation in Drill Strings Using Vibration Transfer Matrix Methods
,”
J. Acoust. Soc. Am.
,
134
(
3
), pp.
1920
1931
.
5.
Ma
,
Z.
, and
Chen
,
D.
,
2015
, “
Modeling of Coupled Axial and Torsional Motions of a Drilling System
,”
ASME
Paper No. DSCC2015-9939.
6.
Liu
,
G.
, and
Quek
,
S.
,
2013
,
The Finite Element Method: A Practical Course
,
Butterworth-Heinemann
,
Oxford, UK
.
7.
Kreuzer
,
E.
, and
Steidl
,
M.
,
2012
, “
Controlling Torsional Vibrations of Drill Strings Via Decomposition of Traveling Waves
,”
Arch. Appl. Mech.
,
82
(
4
), pp.
515
531
.
8.
Kamel
,
J. M.
, and
Yigit
,
A. S.
,
2014
, “
Modeling and Analysis of Stick-Slip and Bit Bounce in Oil Well Drillstrings Equipped With Drag Bits
,”
J. Sound Vib.
,
333
(
25
), pp.
6885
6899
.
9.
Ritto
,
T. G.
,
Soize
,
C.
, and
Sampaio
,
R.
,
2009
, “
Non-Linear Dynamics of a Drill-string With Uncertain Model of the Bit–Rock Interaction
,”
Int. J. Non-Linear Mech.
,
44
(
8
), pp.
865
876
.
10.
Germay
,
C.
, Van de Wouw, N., Nijmeijer, H., and Sepulchre, R.,
2009
, “
Nonlinear Drillstring Dynamics Analysis
,”
SIAM J. Appl. Dyn. Syst.
,
8
(
2
), pp.
527
553
.
11.
Navarro-López
,
E. M.
, and
Licéaga-Castro
,
E.
,
2009
, “
Non-Desired Transitions and Sliding-Mode Control of a Multi-DOF Mechanical System With Stick-Slip Oscillations
,”
Chaos, Solitons Fractals
,
41
(
4
), pp.
2035
2044
.
12.
Ritto
,
T. G.
, Escalante, M. R., Sampaio, R., and Rosales, M. B.,
2013
, “
Drill-String Horizontal Dynamics With Uncertainty on the Frictional Force
,”
J. Sound Vib.
,
332
(
1
), pp.
145
153
.
13.
Germay
,
C.
,
Denoël
,
V.
, and
Detournay
,
E.
,
2009
, “
Multiple Mode Analysis of the Self-Excited Vibrations of Rotary Drilling Systems
,”
J. Sound Vib.
,
325
(
1
), pp.
362
381
.
14.
Ahmadi
,
K.
, and
Altintas
,
Y.
,
2013
, “
Stability of Lateral, Torsional and Axial Vibrations in Drilling
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
63
74
.
15.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2006
, “
Stick-Slip and Bit-Bounce Interaction in Oil-Well Drillstrings
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
268
274
.
You do not currently have access to this content.