Switched inertance hydraulic systems (SIHS) use inductive, capacitive, and switching elements to boost or “buck” (reduce) a pressure from a source to a load in an ideally lossless manner. Real SIHS circuits suffer a variety of energy losses, with throttling of flow during transitions of the high-speed valve resulting in as much as 44% of overall losses. These throttling energy losses can be mitigated by applying the analog of zero-voltage-switching, a soft switching strategy, adopted from power electronics. In the soft switching circuit, the flow that would otherwise be throttled across the transitioning valve is stored in a capacitive element and bypassed through check valves in parallel with the switching valves. To evaluate the effectiveness of soft switching in a boost converter SIHS, a lumped parameter model was constructed. Simulation demonstrates that soft switching improves the efficiency of the modeled circuit by 42% at peak load power and extends the power delivery capabilities by 77%.

References

1.
Mohan
,
N.
,
Undeland
,
T. M.
, and
Robbins
,
W. P.
,
2007
,
Power Electronics: Converters, Applications, and Design
, 3rd ed.,
Wiley
,
Hoboken, NJ
.
2.
Brown
,
F. T.
,
Tentarelli
,
S. C.
, and
Ramachandran
,
S. S.
,
1988
, “
A Hydraulic Rotary Switched-Inertance Servo-Transformer
,”
ASME J. Dyn. Syst. Meas. Control
,
110
(
2
), pp.
144
150
.
3.
Rannow
,
M. B.
, and
Li
,
P. Y.
,
2012
, “
Soft Switching Approach to Reducing Transition Losses in an On/Off Hydraulic Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
6
), p.
064501
.
4.
Van de Ven
,
J. D.
,
2014
, “
Soft Switch Lock-Release Mechanism for a Switch-Mode Hydraulic Pump Circuit
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
3
), p.
031003
.
5.
Beckstrand
,
B. K.
, and
Van De Ven
,
J. D.
,
2014
, “
Experimental Validation of a Soft Switch for a Virtually Variable Displacement Pump
,”
ASME
Paper No. FPMC2014-7857.
6.
Henze
,
C. P.
,
Martin
,
H. C.
, and
Parsley
,
D. W.
,
1988
, “
Zero-Voltage Switching in High Frequency Power Converters Using Pulse Width Modulation
,”
Third Annual IEEE Applied Power Electronics Conference and Exposition
(
APEC
), New Orleans, LA, Feb. 1–5, pp.
33
40
.
7.
Wang
,
P.
,
Kudzma
,
S.
,
Johnston
,
N.
,
Plummer
,
A.
, and
Hillis
,
A.
,
2011
, “
The Influence of Wave Effects on Digital Switching Valve Performance
,”
The Fourth Workshop on Digital Fluid Power
, Linz, Austria, Sept. 21–22.http://opus.bath.ac.uk/34295/
8.
De Negri
,
V. J.
,
Wang
,
P.
,
Plummer
,
A.
, and
Johnston
,
D. N.
,
2014
, “
Behavioural Prediction of Hydraulic Step-Up Switching Converters
,”
Int. J. Fluid Power
,
15
(
1
), pp.
1
9
.
9.
Pan
,
M.
,
Johnston
,
N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2013
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
1
), pp.
12
25
.
10.
Pan
,
M.
,
Johnston
,
N.
,
Plummer
,
A.
,
Kudzma
,
S.
, and
Hillis
,
A.
,
2014
, “
Theoretical and Experimental Studies of a Switched Inertance Hydraulic System Including Switching Transition Dynamics, Non-Linearity and Leakage
,”
Proc. Inst. Mech. Eng., Part I
,
228
(
10
), pp.
802
815
.
11.
Manhartsgruber
,
B.
,
Mikota
,
G.
, and
Scheidl
,
R.
,
2005
, “
Modelling of a Switching Control Hydraulic System
,”
Math. Comput. Modell. Dyn. Syst.
,
11
(
3
), pp.
329
344
.
12.
Wylie
,
E. B.
,
Streeter
,
V. L.
, and
Suo
,
L.
,
1993
,
Fluid Transients in Systems
, Vol.
1
,
Prentice Hall
,
Englewood Cliffs, NJ
.
13.
Grainger
,
J. J.
, and
Stevenson
,
W. D.
,
1994
,
Power System Analysis
, Vol.
31
,
McGraw-Hill
,
New York
.
14.
Yudell
,
A. C.
,
Koktavy
,
S. E.
, and
de Ven
,
J. D.
,
2015
, “
Crank-Slider Spool Valve for Switch-Mode Circuits
,”
ASME
Paper No. FPMC2015-9606.
15.
Scheidl
,
R.
,
Schindler
,
D.
,
Riha
,
G.
, and
Leitner
,
W.
,
1995
, “
Basics for the Energy-Efficient Control of Hydraulic Drives by Switching Techniques
,”
Third Conference on Mechatronics and Robotics
, Paderborn, Germany, Oct. 4–6, pp.
118
131
.https://link.springer.com/chapter/10.1007%2F978-3-322-91170-4_9
16.
Leati
,
E.
,
Gradl
,
C.
, and
Scheidl
,
R.
,
2016
, “
Modeling of a Fast Plate Type Hydraulic Check Valve
,”
ASME J. Dyn. Syst. Meas. Control
,
138
(
6
), p.
061002
.
17.
Knutson
,
A. L.
, and
Van de Ven
,
J. D.
,
2016
, “
Modeling and Experimental Validation of a Reed Check Valve for Hydraulic Applications
,”
ASME
Paper No. FPMC2016-1768.
You do not currently have access to this content.