Onboard vehicle parameter estimation is an important procedure for advanced vehicle control tasks, especially for vehicles whose payload configurations vary in day-to-day use. This study presents a newly proposed estimation method based on the Ackermann’s steering geometry (ASG) that aims to estimate multiple vehicle's center of gravity (CG) position and inertial parameters at the same time. In this method, the vehicle planar motion equations are first synthesized into a form where only the lateral force of one front wheel and longitudinal forces appear. This way, the influence of uncertainties in the tire lateral force models is greatly reduced. Then, the condition of eliminating the remaining front wheel lateral force term can be derived, which is exactly the Ackermann’s steering geometry. When the influence of lateral tire force terms are eliminated, regression technique is applied to estimate the needed vehicle parameters. Vehicle’s suspension kinematics is also considered in the processing of dynamic signals. Unlike conventional methods in estimating vehicle’s payload related parameters, the new method requires neither lateral tire force model nor accurate suspension property parameters. Simulations in CarSim®-Simulink environment verified that the proposed method is capable of estimating vehicle parameters such as CG position and inertial parameters at the same time.

References

1.
Zhang
,
H.
,
Zhang
,
X.
, and
Wang
,
J.
,
2014
, “
Robust Gain-Scheduling Energy-to-Peak Control of Vehicle Lateral Dynamics Stabilization
,”
Veh. Syst. Dyn.
,
52
(
3
), pp.
309
340
.
2.
Huang
,
X.
, and
Wang
,
J.
,
2011
, “
Lightweight Vehicle Control-Oriented Modeling and Payload Parameter Sensitivity Analysis
,”
IEEE Trans. Veh. Technol.
,
60
(
5
), pp.
1999
2011
.
3.
Li
,
L.
,
Jia
,
G.
,
Ran
,
X.
,
Song
,
J.
, and
Wu
,
K.
,
2014
, “
A Variable Structure Extended Kalman Filter for Vehicle Sideslip Angle Estimation on a Low Friction Road
,”
Veh. Syst. Dyn.
,
52
(
2
), pp.
280
308
.
4.
Antonov
,
S.
,
Fehn
,
A.
, and
Kugi
,
A.
,
2011
, “
Unscented Kalman Filter for Vehicle State Estimation
,”
Veh. Syst. Dyn.
,
49
(
9
), pp.
1497
1520
.
5.
McIntyre
,
M. L.
,
Ghotikar
,
T. J.
,
Vahidi
,
A.
,
Song
,
X.
, and
Dawson
,
D. M.
,
2009
, “
A Two-Stage Lyapunov-Based Estimator for Estimation of Vehicle Mass and Road Grade
,”
IEEE Trans. Veh. Technol.
,
58
(
7
), pp.
3177
3185
.
6.
Mahyuddin
,
M. N.
,
Na
,
J.
,
Herrmann
,
G.
,
Ren
,
X.
, and
Barber
,
P.
,
2014
, “
Adaptive Observer-Based Parameter Estimation With Application to Road Gradient and Vehicle Mass Estimation
,”
IEEE Trans. Ind. Electron.
,
61
(
6
), pp.
2851
2863
.
7.
Winstead
,
V.
, and
Kolmanovsky
,
I. V.
,
2005
, “
Estimation of Road Grade and Vehicle Mass Via Model Predictive Control
,” 2005
IEEE
Conference on Control Applications
, Aug. 28–31, pp.
1588
1593
.
8.
Fathy
,
H. K.
,
Kang
,
D.
, and
Stein
,
J. L.
,
2008
, “
Online Vehicle Mass Estimation Using Recursive Least Squares and Supervisory Data Extraction
,”
2008 American Control Conference
, June 11–13, pp.
1842
1848
.
9.
Vahidi
,
A.
,
Stefanopoulou
,
A.
, and
Peng
,
H.
,
2005
, “
Recursive Least Squares With Forgetting for Online Estimation of Vehicle Mass and Road Grade: Theory and Experiments
,”
Veh. Syst. Dyn.
,
43
(
1
), pp.
31
55
.
10.
Bae
,
H. S.
,
Ryu
,
J.
, and
Gerdes
,
J. C.
,
2001
, “
Road Grade and Vehicle Parameter Estimation for Longitudinal Control Using GPS
,”
IEEE
Conference on Intelligent Transportation Systems, pp.
25
29
.
11.
Rozyn
,
M.
, and
Zhang
,
N.
,
2010
, “
A Method for Estimation of Vehicle Inertial Parameters
,”
Veh. Syst. Dyn.
,
48
(
5
), pp.
547
565
.
12.
Pence
,
B. L.
,
Fathy
,
H. K.
, and
Stein
,
J. L.
,
2014
, “
Recursive Estimation for Reduced-Order State-Space Models Using Polynomial Chaos Theory Applied to Vehicle Mass Estimation
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
224
229
.
13.
Limroth
,
J.
,
2009
, “
Real-Time Vehicle Parameter Estimation and Adaptive Stability Control
,”
Ph.D. thesis
, Clemson University, Clemson, SC.
14.
Liu
,
C.
, and
Peng
,
H.
,
1998
, “
A State and Parameter Identification Scheme for Linearly Parameterized Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
120
(
4
), pp.
524
528
.
15.
Ryu
,
J.
,
2004
, “
State and Parameter Estimation for Vehicle Dynamics Control Using GPS
,” Ph.D. thesis, Stanford University, Stanford, CA.
16.
Yu
,
Z.
,
Huang
,
X.
, and
Wang
,
J.
,
2015
, “
A Least-Squares Regression Based Method for Vehicle Yaw Moment of Inertia Estimation
,”
American Control Conference
, July 1–3, pp.
5432
5437
.
17.
Rajamani
,
R.
,
Piyabongkarn
,
D.
,
Tsourapas
,
V.
, and
Lew
,
J. Y.
,
2009
, “
Real-Time Estimation of Roll Angle and CG Height for Active Rollover Prevention Applications
,”
American Control Conference
, June 10–12, pp.
433
438
.
18.
Huang
,
X.
, and
Wang
,
J.
,
2013
, “
Center of Gravity Height Real-Time Estimation for Lightweight Vehicles Using Tire Instant Effective Radius
,”
Control Eng. Pract.
,
21
(
4
), pp.
370
380
.
19.
Russo
,
M.
,
Russo
,
R.
, and
Volpe
,
A.
,
2000
, “
Car Parameters Identification by Handling Maneuvers
,”
Veh. Syst. Dyn.
,
34
(
6
), pp.
423
436
.
20.
Wenzel
,
T. A.
,
Burnham
,
K.
,
Blundell
,
M. V.
, and
Williams
,
R. A.
,
2006
, “
Dual Extended Kalman Filter for Vehicle State and Parameter Estimation
,”
Veh. Syst. Dyn.
,
44
(
2
), pp.
153
171
.
21.
Wesemeier
,
D.
, and
Isermann
,
R.
,
2009
, “
Identification of Vehicle Parameters Using Stationary Driving Maneuvers
,”
Control Eng. Pract.
,
17
(
12
), pp.
1426
1431
.
22.
Huang
,
X.
, and
Wang
,
J.
,
2013
, “
Longitudinal Motion Based Lightweight Vehicle Payload Parameter Real-Time Estimations
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
1
), p.
011013
.
23.
Solmaz
,
S.
,
Akar
,
M.
,
Shorten
,
R.
, and
Kalkkuhl
,
J.
,
2008
, “
Real-Time Multiple-Model Estimation of Centre of Gravity Position in Automotive Vehicles
,”
Veh. Syst. Dyn.
,
46
(
9
), pp.
763
788
.
24.
Tseng
,
H. E.
,
Xu
,
L.
, and
Hrovat
,
D.
,
2007
, “
Estimation of Land Vehicle Roll and Pitch Angles
,”
Veh. Syst. Dyn.
,
45
(
5
), pp.
433
443
.
25.
Genta
,
G.
,
1997
,
Motor Vehicle Dynamics: Modeling and Simulation
,
World Scientific
, Singapore, Chap. 6.
26.
Wong
,
J. Y.
,
2001
,
Theory of Ground Vehicles
, 3rd ed.,
Wiley
, New York, Chap. 6.
You do not currently have access to this content.