Abstract

Model predictive control (MPC) is the mainstream method in the motion control of autonomous vehicles. However, due to the complex and changeable driving environment, the perturbation of vehicle parameters will cause the steady-state error problem, which will lead to the degradation of controller performance. In this paper, the offset-free MPC control method is proposed to solve the steady-state error problem systematically. The core idea of this method is to model the model mismatch, control input offset, and external disturbances as disturbance terms, then use filters to observe these disturbances and finally eliminate the influence of these disturbances on the steady-state error in the MPC solution stage. This paper uses the Kalman filter as an observer, which is integrated into our latest designed MPC solver. Based on state-of-the-art sparse quadratic programming (QP) solver operator splitting solver for quadratic programs (OSQP), an offset free model predictive control (OF-MPC) framework based on disturbance observation and MPC is formed. The proposed OF-MPC solver can efficiently deal with common model mismatch problems such as tire stiffness mismatch, steering angle offset, lateral slope disturbance, and so on. This framework is very efficient and completes all calculations in less than 7 ms when the horizon length is 50. The efficiency and robustness of the algorithm are verified on our newly designed robot operating system (ROS)-Unreal4-carsim real-time cosimulation platform and real vehicle experiments.

References

1.
Wallace
,
R.
,
Stentz
,
A.
,
Thorpe
,
C. E.
,
Maravec
,
H.
, and
Kanade
,
T.
,
1985
,
First Results in Robot Road-Following
,
Morgan Kaufmann Publishers
, Pittsburgh, PA.
2.
Urmson
,
C.
,
Ragusa
,
C.
,
Ray
,
D.
,
Anhalt
,
J.
,
Bartz
,
D.
,
Galatali
,
T.
,
Gutierrez
,
A.
, et al.,
2006
, “
A Robust Approach to High-Speed Navigation for Unrehearsed Desert Terrain
,”
J. Field Rob.
,
23
(
8
), pp.
467
508
.10.1002/rob.20126
3.
Pei
,
X.
,
Hu
,
X.
,
Liu
,
W.
,
Chen
,
Z.
, and
Yang
,
B.
,
2018
, “
State Estimation of Vehicle's Dynamic Stability Based on the Nonlinear Kalman Filter
,”
Automot. Innov.
,
1
(
3
), pp.
281
289
.10.1007/s42154-018-0028-6
4.
Hoffmann
,
G. M.
,
Tomlin
,
C. J.
,
Montemerlo
,
M.
, and
Thrun
,
S.
,
2007
, “
Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing
,”
American Control Conference (ACC '07)
, New York, July
9
13
.10.1109/ACC.2007.4282788
5.
Guo
,
L.
,
Ping-Shu
,
G. E.
,
Yang
,
X. L.
, and
Bing
,
L. I.
,
2014
, “Intelligent Vehicle Trajectory Tracking Based on Neural Networks Sliding Mode Control,” International Conference on Informative and Cybernetics for Computational Social Systems (
ICCSS
), Tsingtao China, Oct.
9
10
.10.1109/ICCSS.2014.6961816
6.
Goodarzi
,
A.
,
Sabooteh
,
A.
, and
Esmailzadeh
,
E.
,
2008
, “
Automatic Path Control Based on Integrated Steering and External Yaw-Moment Control
,”
Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn.
,
222
(
2
), pp.
189
200
.10.1243/14644193JMBD120
7.
Falcone
,
P.
,
Borrelli
,
F.
,
Asgari
,
J.
,
Tseng
,
H. E.
, and
Hrovat
,
D.
,
2007
, “
Predictive Active Steering Control for Autonomous Vehicle Systems
,”
IEEE Trans. Control Syst. Technol.
,
15
(
3
), pp.
566
580
.10.1109/TCST.2007.894653
8.
Hu
,
C.
,
Wang
,
R.
,
Yan
,
F.
, and
Nan
,
C.
,
2015
, “
Should the Desired Heading in Path Following of Autonomous Vehicles Be the Tangent Direction of the Desired Path?
,”
IEEE Trans. Intell. Transp. Syst.
,
16
(
6
), pp.
3084
3094
.10.1109/TITS.2015.2435016
9.
Hashemi
,
E.
,
Qin
,
Y.
, and
Khajepour
,
A.
,
2022
, “
Slip-Aware Driver Assistance Path Tracking and Stability Control
,”
Control Eng. Pract.
,
118
, p.
104958
.10.1016/j.conengprac.2021.104958
10.
Alberding
,
M. B.
,
Tjønnås
,
J.
, and
Johansen
,
T. A.
,
2014
, “
Integration of Vehicle Yaw Stabilisation and Rollover Prevention Through Nonlinear Hierarchical Control Allocation
,”
Veh. Syst. Dyn.
,
52
(
12
), pp.
1607
1621
.10.1080/00423114.2014.952643
11.
Hashemi
,
E.
,
Jalali
,
M.
,
Khajepour
,
A.
,
Kasaiezadeh
,
A.
, and
Chen
,
S-k.
,
2020
, “
Vehicle Stability Control: Model Predictive Approach and Combined-Slip Effect
,”
IEEE/ASME Trans. Mechatronics
,
25
(
6
), pp.
2789
2800
.10.1109/TMECH.2020.2993792
12.
Fnadi
,
M.
,
Plumet
,
F.
, and
Benamar
,
F.
,
2019
, “
Model Predictive Control Based Dynamic Path Tracking of a Four-Wheel Steering Mobile Robot
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Macau, China, Nov.
3
8
.10.1109/IROS40897.2019.8967627
13.
Peng
,
H.
,
Wang
,
W.
,
An
,
Q.
,
Xiang
,
C.
, and
Li
,
L.
,
2020
, “
Path Tracking and Direct Yaw Moment Coordinated Control Based on Robust MPC With the Finite Time Horizon for Autonomous Independent-Drive Vehicles
,”
IEEE Trans. Veh. Technol.
,
69
(
6
), pp.
6053
6066
.10.1109/TVT.2020.2981619
14.
Guo
,
N.
,
Zhang
,
X.
,
Zou
,
Y.
,
Lenzo
,
B.
, and
Zhang
,
T.
,
2020
, “
A Computationally Efficient Path-Following Control Strategy of Autonomous Electric Vehicles With Yaw Motion Stabilization
,”
IEEE Trans. Transp. Electrif.
,
6
(
2
), p.
728
.10.1109/TTE.2020.2993862
15.
Zhang
,
Y.
,
Khajepour
,
A.
,
Hashemi
,
E.
,
Qin
,
Y.
, and
Huang
,
Y.
,
2020
, “
Reconfigurable Model Predictive Control for Articulated Vehicle Stability With Experimental Validation
,”
IEEE Trans. Transp. Electrif.
,
6
(
1
), pp.
308
317
.10.1109/TTE.2020.2972374
16.
Cheng
,
S.
,
Li
,
L.
,
Guo
,
H. Q.
,
Chen
,
Z. G.
, and
Song
,
P.
,
2019
, “
Longitudinal Collision Avoidance and Lateral Stability Adaptive Control System Based on MPC of Autonomous Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
PP
(
99
), pp.
1
10
.10.1109/TITS.2019.2918176
17.
Ataei
,
M.
,
Khajepour
,
A.
, and
Jeon
,
S.
,
2020
, “
Model Predictive Control for Integrated Lateral Stability, Traction/Braking Control, and Rollover Prevention of Electric Vehicles
,”
Veh. Syst. Dyn.
,
58
(
1
), pp.
49
73
.10.1080/00423114.2019.1585557
18.
Ghazali
,
M.
,
Durali
,
M.
, and
Salarieh
,
H.
,
2017
, “
Path-Following in Model Predictive Rollover Prevention Using Front Steering and Braking
,”
Veh. Syst. Dyn.
,
55
(
1
), pp.
121
148
.10.1080/00423114.2016.1246741
19.
Zou
,
Y.
,
Guo
,
N.
, and
Zhang
,
X.
,
2019
, “
An Integrated Control Strategy of Path Following and Lateral Motion Stabilization for Autonomous Distributed Drive Electric Vehicles
,”
Proc. Inst. Mech. Eng. Part D J. Autom. Eng.
,
235
(
4
), pp.
1164
1179
.10.1177/0954407019884168
20.
Yu
,
J.
,
Guo
,
X.
,
Pei
,
X.
,
Chen
,
Z.
,
Zhou
,
W.
,
Zhu
,
M.
, and
Wu
,
C.
,
2020
, “
Path Tracking Control Based on Tube MPC and Time Delay Motion Prediction
,”
IET Intell. Transp. Syst.
,
14
(
1
), pp.
1
12
.10.1049/iet-its.2019.0088
21.
Planakis
,
N.
,
Papalambrou
,
G.
, and
Kyrtatos
,
N.
,
2021
, “
Integrated Load-Split Scheme for Hybrid Ship Propulsion Considering Transient Propeller Load and Environmental Disturbance
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
3
), p.
031004
.10.1115/1.4048588
22.
Pannocchia
,
G.
,
2015
, “
Offset-Free Tracking MPC: A Tutorial Review and Comparison of Different Formulations
,” European
Control Conference
, Linz, Austria, July
15
17
.10.1109/ECC.2015.7330597
23.
Zeilinger
,
M. N.
,
Morari
,
M.
, and
Jones
,
C. N.
,
2014
, “
Soft Constrained Model Predictive Control With Robust Stability Guarantees
,”
IEEE Trans. Autom. Control
,
59
(
5
), pp.
1190
1202
.10.1109/TAC.2014.2304371
24.
Zometa
,
P.
,
Kogel
,
M.
, and
Findeisen
,
R.
,
2013
, “
Μao-MPC: A Free Code Generation Tool for Embedded Real-Time Linear Model Predictive Control
,”
American Control Conference
, Washington, DC, June
17
19
.10.1109/ACC.2013.6580668
25.
Frison
,
G.
,
Sorensen
,
H.
,
Dammann
,
B.
, and
Jorgensen
,
J. B.
,
2014
, “
High-Performance Small-Scale Solvers for Linear Model Predictive Control
,”
European Control Conference (ECC)
, Strasbourg, France, June
24
27
.10.1109/ECC.2014.6862490
26.
Xia
,
X.
,
Hashemi
,
E.
,
Xiong
,
L.
,
Khajepour
,
A.
, and
Xu
,
N.
,
2021
, “
Autonomous Vehicles Sideslip Angle Estimation: Single Antenna Gnss/Imu Fusion With Observability Analysis
,”
IEEE Internet Things J.
,
8
(
19
), pp.
14845
14859
.10.1109/JIOT.2021.3072354
27.
Selmanaj
,
D.
,
Corno
,
M.
,
Panzani
,
G.
, and
Savaresi
,
S. M.
,
2017
, “
Vehicle Sideslip Estimation: A Kinematic Based Approach
,”
Control Eng. Pract.
,
67
, pp.
1
12
.10.1016/j.conengprac.2017.06.013
28.
Yoon
,
J.-H.
, and
Peng
,
H.
,
2014
, “
Robust Vehicle Sideslip Angle Estimation Through a Disturbance Rejection Filter That Integrates a Magnetometer With Gps
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
1
), pp.
191
204
.10.1109/TITS.2013.2275173
29.
Ferreau
,
H. J.
,
Kirches
,
C.
,
Potschka
,
A.
,
Bock
,
H. G.
, and
Diehl
,
M.
,
2014
, “
Qpoases: A Parametric Active-Set Algorithm for Quadratic Programming
,”
Math. Program. Comput.
,
6
(
4
), pp.
327
363
.10.1007/s12532-014-0071-1
30.
Stellato
,
B.
,
Banjac
,
G.
,
Goulart
,
P.
,
Bemporad
,
A.
, and
Boyd
,
S.
,
2018
, “
Osqp: An Operator Splitting Solver for Quadratic Programs
,”
UKACC 12th International Conference on Control (CONTROL)
, Sheffield, UK, Sept.
5
7
.
31.
Cheshmi
,
K.
,
Kaufman
,
D. M.
,
Kamil
,
S.
, and
Dehnavi
,
M. M.
,
2020
, “
NASOQ: Numerically Accurate Sparsity-Oriented QP Solver
,”
ACM Trans. Graph.
,
39
(
4
), pp. 96-1.10.1145/3386569.3392486
32.
Ding
,
B.
,
Zou
,
T.
, and
Pan
,
H.
,
2012
, “
A Discussion on Stability of Offset-Free Linear Model Predictive Control
,” 24th Chinese Control and Decision Conference (
CCDC
), Taiyuan, May 23-25, pp.
80
85
.10.1109/CCDC.2012.6244013
You do not currently have access to this content.