Abstract

Fast tool servo (FTS) systems have emerged as a promising technology in ultraprecision manufacturing, where sophisticated contouring in the manufacturing process poses significant challenges to the dynamical tracking of periodical references at nanoscale. The situation is further complicated by the existence of time delays, load variations, as well as disturbances. Comprehensive handling of these problems in a unified framework is crucial to the manufacturing precision of FTS systems. In this paper, we propose a modified robust repetitive control structure for FTS systems with time delays to improve the tracking performance by loop shaping. On top of the specific structure of the robust repetitive controller, a parallel structure is first introduced to optimize the low-pass filter to increase controller gains at the fundamental and harmonic frequencies, such that an improved tracking performance is obtained but at the cost disturbance rejection capabilities. To this end, a cascaded structure is then introduced to further shape the sensitivity function to compensate the external disturbances especially near the maximum sensitivity frequency. Taking the robustness against model uncertainties into consideration, we further formulate the multistage design of the proposed controller as an H optimization problem solving by skew Toeplitz approach. Real-time experiments are conducted on a prototype of the FTS system demonstrating excellent tracking performance of the proposed control approach.

References

1.
Zhao
,
D.
,
Zhu
,
Z.
,
Huang
,
P.
,
Guo
,
P.
,
Zhu
,
L.
, and
Zhu
,
Z.
,
2020
, “
Development of a Piezoelectrically Actuated Dual-Stage Fast Tool Servo
,”
Mech. Syst. Signal Process.
,
144
, p.
106873
.10.1016/j.ymssp.2020.106873
2.
Zhu
,
L.
,
Li
,
Z.
,
Fang
,
F.
,
Huang
,
S.
, and
Zhang
,
X.
,
2018
, “
Review on Fast Tool Servo Machining of Optical Freeform Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
95
(
5–8
), pp.
2071
2092
.10.1007/s00170-017-1271-4
3.
Ding
,
F.
,
Luo
,
X.
,
Zhong
,
W.
, and
Chang
,
W.
,
2019
, “
Design of a New Fast Tool Positioning System and Systematic Study on Its Positioning Stability
,”
Int. J. Mach. Tools Manuf.
,
142
, pp.
54
65
.10.1016/j.ijmachtools.2019.04.008
4.
Chang
,
K.-M.
,
Cheng
,
W.-T.
, and
Liu
,
Y.-T.
,
2019
, “
Development of Non-Axisymmetric Aspheric Ultra-Precision Machining Using FPGA-Based Piezoelectric FTS
,”
Sens. Actuators A: Phys.
,
291
, pp.
99
106
.10.1016/j.sna.2019.03.052
5.
Zhu
,
Z.
,
Du
,
H.
,
Zhou
,
R.
,
Huang
,
P.
,
Zhu
,
W.-L.
, and
Guo
,
P.
,
2020
, “
Design and Trajectory Tracking of a Nanometric Ultra-Fast Tool Servo
,”
IEEE Trans. Ind. Electron.
,
67
(
1
), pp.
432
441
.10.1109/TIE.2019.2896103
6.
Li
,
J.
,
Tang
,
H.
,
Wu
,
Z.
,
Li
,
H.
,
Zhang
,
G.
,
Chen
,
X.
,
Gao
,
J.
,
Xu
,
Y.
, and
He
,
Y.
,
2019
, “
A Stable Autoregressive Moving Average Hysteresis Model in Flexure Fast Tool Servo Control
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
3
), pp.
1484
1493
.10.1109/TASE.2019.2899342
7.
Zhu
,
Z.
,
Chen
,
L.
,
Huang
,
P.
,
Schönemann
,
L.
,
Riemer
,
O.
,
Yao
,
J.
,
To
,
S.
, and
Zhu
,
W.-L.
,
2020
, “
Design and Control of a Piezoelectrically Actuated Fast Tool Servo for Diamond Turning of Microstructured Surfaces
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6688
6697
.10.1109/TIE.2019.2937051
8.
Wang
,
H.
, and
Yang
,
S.
,
2013
, “
Design and Control of a Fast Tool Servo Used in Noncircular Piston Turning Process
,”
Mech. Syst. Signal Process.
,
36
(
1
), pp.
87
94
.10.1016/j.ymssp.2011.07.013
9.
Hara
,
S.
,
Yamamoto
,
Y.
,
Omata
,
T.
, and
Nakano
,
M.
,
1988
, “
Repetitive Control System: A New Type Servo System for Periodic Exogenous Signals
,”
IEEE Trans. Autom. Control
,
33
(
7
), pp.
659
668
.10.1109/9.1274
10.
Tomizuka
,
M.
,
1987
, “
Zero Phase Error Tracking Algorithm for Digital Control
,”
ASME J. Dyn. Syst., Meas., Control
,
109
(
1
), pp.
65
68
.10.1115/1.3143822
11.
Tsao
,
T.-C.
, and
Tomizuka
,
M.
,
1994
, “
Robust Adaptive and Repetitive Digital Tracking Control and Application to a Hydraulic Servo for Noncircular Machining
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
1
), pp.
24
32
.10.1115/1.2900676
12.
Li
,
J.
, and
Tsao
,
T.-C.
,
2001
, “
Robust Performance Repetitive Control Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
123
(
3
), pp.
330
337
.10.1115/1.1387015
13.
Pandove
,
G.
, and
Singh
,
M.
,
2019
, “
Robust Repetitive Control Design for a Three-Phase Four Wire Shunt Active Power Filter
,”
IEEE Trans. Ind. Inf.
,
15
(
5
), pp.
2810
2818
.10.1109/TII.2018.2875035
14.
Nagahara
,
M.
, and
Yamamoto
,
Y.
,
2016
, “
Digital Repetitive Controller Design Via Sampled-Data Delayed Signal Reconstruction
,”
Automatica
,
65
, pp.
203
209
.10.1016/j.automatica.2015.11.029
15.
Peery
,
T. E.
, and
Özbay
,
H.
,
1997
, “
H∞ Optimal Repetitive Controller Design for Stable Plants
,”
ASME J. Dyn. Syst., Meas., Control
,
119
(
3
), pp.
541
547
.10.1115/1.2801291
16.
Crudele
,
M.
, and
Kurfess
,
T. R.
,
2003
, “
Implementation of a Fast Tool Servo With Repetitive Control for Diamond Turning
,”
Mechatronics
,
13
(
3
), pp.
243
257
.10.1016/S0957-4158(01)00036-8
17.
Li
,
Y.
, and
Xu
,
Q.
,
2012
, “
Design and Robust Repetitive Control of a New Parallel-Kinematic XY Piezostage for Micro/Nanomanipulation
,”
IEEE/ASME Trans. Mechatron.
,
17
(
6
), pp.
1120
1132
.10.1109/TMECH.2011.2160074
18.
Eielsen
,
A. A.
,
Gravdahl
,
J. T.
, and
Leang
,
K. K.
,
2015
, “
Low-Order Continuous-Time Robust Repetitive Control: Application in Nanopositioning
,”
Mechatronics
,
30
, pp.
231
243
.10.1016/j.mechatronics.2015.07.006
19.
Kim
,
B.-S.
, and
Tsao
,
T.-C.
,
2004
, “
A Performance Enhancement Scheme for Robust Repetitive Control System
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
1
), pp.
224
229
.10.1115/1.1650386
20.
Zhou
,
L.
,
She
,
J.
,
Zhang
,
X.-M.
,
Cao
,
Z.
, and
Zhang
,
Z.
,
2020
, “
Performance Enhancement of RCS and Application to Tracking Control of Chuck-Workpiece Systems
,”
IEEE Trans. Ind. Electron.
,
67
(
5
), pp.
4056
4065
.10.1109/TIE.2019.2921272
21.
Kim
,
B.-S.
, and
Tsao
,
T.-C.
,
2001
, “
Robust Repetitive Controller Design With Improved Performance
,”
Proceedings of the 2001 American Control Conference
, Vol.
3
, Arlington, VA, June 25–27, IEEE Cat. No. 01CH37148, pp.
2027
2032
.10.1109/ACC.2001.946040
22.
Gu
,
G.-Y.
,
Li
,
C.-X.
,
Zhu
,
L.-M.
, and
Su
,
C.-Y.
,
2016
, “
Modeling and Identification of Piezoelectric-Actuated Stages Cascading Hysteresis Nonlinearity With Linear Dynamics
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1792
1797
.10.1109/TMECH.2015.2465868
23.
Chen
,
H.
,
Yan
,
P.
, and
Zhang
,
Z.
,
2017
, “
Robust Repetitive Control for Time Delay Systems With Application to Nano Manipulations
,” 2017 36th Chinese Control Conference (
CCC
), Dalian, China, July 26–28
, pp.
3118
3123
.10.23919/ChiCC.2017.8027837
24.
Toker
,
O.
, and
Özbay
,
H.
,
1995
, “
H∞ Optimal and Suboptimal Controllers for Infinite Dimensional SISO Plants
,”
IEEE Trans. Autom. Control
,
40
(
4
), pp.
751
755
.10.1109/9.376094
25.
Gumussoy
,
S.
,
2012
, “
Coprime-Inner/Outer Factorization of SISO Time-Delay Systems and FIR Structure of Their Optimal H∞ Controllers
,”
Int. J. Robust Nonlinear Control
,
22
(
9
), pp.
981
998
.10.1002/rnc.1740
26.
Kim
,
J.
, and
Lee
,
S.-K.
,
2016
, “
Micro-Patterning Technique Using a Rotating Cutting Tool Controlled by an Electromagnetic Actuator
,”
Int. J. Mach. Tools Manuf.
,
101
, pp.
52
64
.10.1016/j.ijmachtools.2015.11.005
27.
Ma
,
H.
,
Tian
,
J.
, and
Hu
,
D.
,
2013
, “
Development of a Fast Tool Servo in Noncircular Turning and Its Control
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
705
713
.10.1016/j.ymssp.2013.08.011
You do not currently have access to this content.