Abstract

Bikebot (i.e., bicycle-based robot) is a class of underactuated balance robotic systems that require simultaneous trajectory tracking and balance control tasks. We present a tracking and balance control design of an autonomous bikebot. The external-internal convertible structure of the bikebot dynamics is used to design a causal feedback control to achieve both the tracking and balance tasks. A balance equilibrium manifold is used to define and capture the platform balance profiles and coupled interaction with the trajectory tracking performance. To achieve fully autonomous navigation, a gyrobalancer actuation is integrated with the steering and velocity control for stationary platform balance and stationary-moving switching. Stability and convergence analyses are presented to guarantee the control performance. Extensive experiments are presented to validate and demonstrate the autonomous control design. We also compare the autonomous control performance with human riding experiments and similar action strategies are found between them.

References

1.
Han
,
F.
, and
Yi
,
J.
,
2021
, “
Stable Learning-Based Tracking Control of Underactuated Balance Robots
,”
IEEE Robot. Automat. Lett.
,
6
(
2
), pp.
1543
1550
.10.1109/LRA.2021.3056324
2.
Åström
,
K. J.
,
Klein
,
R. E.
, and
Lennartsson
,
A.
,
2005
, “
Bicycle Dynamics and Control
,”
IEEE Control Syst. Mag.
,
25
(
4
), pp.
26
47
.10.1109/MCS.2005.1499389
3.
Beznos
,
A.
,
Formal'sky
,
A.
,
Gurfinkel
,
E.
,
Jicharev
,
D.
,
Lensky
,
A.
,
Savitsky
,
K.
, and
Tchesalin
,
L.
,
1998
, “
Control of Autonomous Motion of Two-Wheel Bicycle With Gyroscopic Stabilisation
,”
Proceedings of International Conference on Robotics and Automation
, Leuven, Belgium, July 6–8, pp.
2670
2675
.10.1109/ROBOT.1998.680749
4.
Getz
,
N.
,
1995
, “
Dynamic Inversion of Nonlinear Maps With Applications to Nonlinear Control and Robotics
,” Ph.D. thesis,
Department of Electrical Enginneering and Computer Sciences, University of California
,
Berkeley, CA
.
5.
Lee
,
S.
, and
Ham
,
W.
,
2002
, “
Self-Stabilzing Strategy in Tracking Control of Unmanned Electric Bicycle With Mass Balance
,”
Proceedings of the IEEE/RSJ International Conference on Robots and Systems
, Lausanne, Switzerland, Sept. 30–Oct. 4, pp.
2200
2205
.10.1109/IRDS.2002.1041594
6.
Yi
,
J.
,
Song
,
D.
,
Levandowski
,
A.
, and
Jayasuriya
,
S.
,
2006
, “
Trajectory Tracking and Balance Stabilization Control of Autonomous Motorcycles
,”
Proceedings of International Conference on Robotics and Automation
, Orlando, FL, May 15–19, pp.
2583
2589
.10.1109/ROBOT.2006.1642091
7.
Tanaka
,
Y.
, and
Murakami
,
T.
,
2009
, “
A Study on Straight-Line Tracking and Posture Control in Electric Bicycle
,”
IEEE Trans. Ind. Electron.
,
56
(
1
), pp.
159
168
.10.1109/TIE.2008.927406
8.
He
,
J.
,
Zhao
,
M.
, and
Stasinopoulos
,
S.
,
2015
, “
Constant-Velocity Steering Control Design for Unmanned Bicycles
,”
Proceedings of IEEE International Conference on Robotics and Biomimetics.
, Zhuhai, China, Dec. 6–9, pp.
428
433
.10.1109/ROBIO.2015.7418805
9.
Chen
,
L.
,
Liu
,
J.
,
Wang
,
H.
,
Hu
,
Y.
,
Zheng
,
X.
,
Ye
,
M.
, and
Zhang
,
J.
,
2021
, “
Robust Control of Reaction Wheel Bicycle Robot Via Adaptive Integral Terminal Sliding Mode
,”
Nonlinear Dyn.
,
104
(
3
), pp.
2291
2302
.10.1007/s11071-021-06380-9
10.
Zou
,
Z.
,
Zhao
,
R.
,
Wu
,
Y.
,
Yang
,
Z.
,
Tian
,
L.
,
Wu
,
S.
,
Wang
,
G.
, et al.,
2020
, “
A Hybrid and Scalable Brain-Inspired Robotic Platform
,”
Sci. Rep.
,
10
(
1
),
18160
.10.1038/s41598-020-73366-9
11.
Wang
,
P.
,
Yi
,
J.
,
Liu
,
T.
, and
Zhang
,
Y.
,
2017
, “
Trajectory Tracking and Balance Control of an Autonomous Bikebot
,”
Proceedings of International Conference on Robotics and Automation
, Singapore, May 29–June 3, pp.
2414
2419
.10.1109/ICRA.2017.7989280
12.
Hauser
,
J.
, and
Saccon
,
A.
,
2006
, “
Motorcycle Modeling for High-Performance Maneuvering
,”
IEEE Control Syst. Mag.
,
26
(
5
), pp.
89
105
.10.1109/MCS.2006.1700047
13.
Yi
,
J.
,
Zhang
,
Y.
, and
Song
,
D.
,
2009
, “
Autonomous Motorcycles for Agile Maneuvers: Part I: Dynamic Modeling
,”
Proceedings of the IEEE Conference on Decision and Control
, Shanghai, China, Dec. 15–18, pp.
4613
4618
.10.1109/CDC.2009.5399495
14.
Yi
,
J.
,
Zhang
,
Y.
, and
Song
,
D.
,
2009
, “
Autonomous Motorcycles for Agile Maneuvers: Part II: Control Systems Design
,”
Proceedings of the IEEE Conference on Decision and Control
, Shanghai, China, Dec. 15–18, pp.
4619
4624
.10.1109/CDC.2009.5399525
15.
Cerone
,
V.
,
Andreo
,
D.
,
Larsson
,
M.
, and
Regruto
,
D.
,
2010
, “
Stabilization of a Riderless Bicycle: A Linear-Parameter-Varying Approach
,”
IEEE Control Syst. Mag.
,
30
(
5
), pp.
23
32
.10.1109/MCS.2010.937745
16.
Zhang
,
Y.
,
Li
,
J.
,
Yi
,
J.
, and
Song
,
D.
,
2011
, “
Balance Control and Analysis of Stationary Riderless Motorcycles
,”
Proceedings of International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
3018
3023
.10.1109/ICRA.2011.5979841
17.
Panzani
,
G.
,
Todeschini
,
D.
,
Corno
,
M.
,
Sette
,
D.
, and
Savaresi
,
S. M.
,
2022
, “
Co-Design and Experimental Validation of a Gyroscopic Stabilizer for Powered Two-Wheelers
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
2484
2494
.10.1109/TMECH.2021.3113290
18.
Kim
,
Y.
,
Kim
,
H.
, and
Lee
,
J.
,
2015
, “
Stable Control of the Bicycle Robot on a Curved Path by Using a Reaction Wheel
,”
J. Mech. Sci. Technol.
,
29
(
5
), pp.
2219
2226
.10.1007/s12206-015-0442-1
19.
Cui
,
L.
,
Wang
,
S.
,
Yang
,
S.
,
Zhang
,
Z.
, and
Jiang
,
Z.-P.
,
2020
, “
Nonlinear Balance Control of an Unmanned Bicycle: Design and Experiments
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
, Las Vegas, NV, Oct. 24, pp.
7279
7284
.10.1109/IROS45743.2020.9341150
20.
Seekhao
,
P.
,
Tungpimolrut
,
K.
, and
Parnichkun
,
M.
,
2020
, “
Development and Control of a Bicycle Robot Based on Steering and Pendulum Balancing
,”
Mechatronics
,
69
, pp.
102386
12
.10.1016/j.mechatronics.2020.102386
21.
Keo
,
L.
, and
Yamakita
,
M.
,
2011
, “
Control of an Autonomous Electric Bicycle With Both Steering and Balancer Controls
,”
Adv. Robot.
,
25
(
1–2
), pp.
1
22
.10.1163/016918610X538462
22.
Hara
,
S.
,
Nakagami
,
K.
,
Miyata
,
K.
,
Tsuchiya
,
M.
, and
Tsujii
,
E.
,
2019
, “
Dynamics and Control of Self-Standable Motorcycle
,”
ASME
Paper No. DETC2019-97154. 10.1115/DETC2019-97154
23.
Cui
,
L.
,
Wang
,
S.
,
Zhang
,
Z.
, and
Jiang
,
Z.-P.
,
2022
, “
Asymptotic Trajectory Tracking of Autonomous Bicycles Via Backstepping and Optimal Control
,”
IEEE Control Syst. Lett.
,
6
, pp.
1292
1297
.10.1109/LCSYS.2021.3091917
24.
Shiriaev
,
A. S.
,
Perram
,
J. W.
, and
Canudas-de-Wit
,
C.
,
2005
, “
Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach
,”
IEEE Trans. Autom. Control
,
50
(
8
), pp.
1164
1176
.10.1109/TAC.2005.852568
25.
Shiriaev
,
A. S.
,
Freidovich
,
L. B.
,
Robertsson
,
A.
,
Johansson
,
R.
, and
Sandberg
,
A.
,
2007
, “
Virtual-Holonomic-Constraints-Based Design of Stable Oscillations of Furuta Pendulum: Theory and Experiments
,”
IEEE Trans. Rob.
,
23
(
4
), pp.
827
832
.10.1109/TRO.2007.900597
26.
Wang
,
P.
, and
Yi
,
J.
,
2016
, “
Balance Equilibrium Manifold and Control of Rider-Bikebot Systems
,”
Proceedings of the American Control Conference
, Boston, MA, July 6–8, pp.
2168
2174
.10.1109/ACC.2016.7525239
27.
Wang
,
P.
,
Yi
,
J.
, and
Liu
,
T.
,
2020
, “
Stability and Control of a Rider-Bicycle System: Analysis and Experiments
,”
IEEE Trans. Automat. Sci. Eng.
,
17
(
1
), pp.
348
360
.10.1109/TASE.2019.2922068
28.
Moore
,
J. K.
,
2012
, “
Human Control of a Bicycle
,”. Ph.D. thesis,
Department of Mechanical and Aerospace Engineering, University of California
Davis, Davis, CA
.
29.
Cain
,
S. M.
,
2013
, “
An Experimental Investigation of Human/Bicycle Dynamics and Rider Skill in Children and Adults
,” Ph.D. thesis,
Department of Biomedical Engineering, University
of
Michigan, Ann Arbor, MI
.
30.
Wang
,
P.
,
Gong
,
Y.
,
Yi
,
J.
, and
Liu
,
T.
,
2019
, “
An Integrated Stationary/Moving Balance Control of an Autonomous Bikebot
,”
American Control Conference
(
ACC
), Philadelphia, PA, July 10–12, pp.
3273
3278
.10.23919/ACC.2019.8814916
31.
Zhang
,
Y.
,
Wang
,
P.
,
Yi
,
J.
,
Song
,
D.
, and
Liu
,
T.
,
2014
, “
Stationary Balance Control of a Bikebot
,”
Proceedings of International Conference on Robotics and Automation
, Hong Kong, China, May 31–June 7, pp.
6706
6711
.10.1109/ICRA.2014.6907849
32.
Wang
,
P.
, and
Yi
,
J.
,
2015
, “
Dynamic Stability of a Rider-Bicycle System: Analysis and Experiments
,”
Proceedings of the American Control Conference
, Chicago, IL, July 1–3, pp.
1161
1166
.
33.
Fajans
,
J.
,
2000
, “
Steering in Bicycles and Motorcycles
,”
Am. J. Phys.
,
68
(
7
), pp.
654
659
.10.1119/1.19504
34.
Zhang
,
Y.
, and
Yi
,
J.
,
2010
, “
Velocity Field-Based Maneuver Regulation of Autonomous Motorcycles
,”
Proceedings of IFAC Symposium on Mechatronic Systems
, Cambridge, MA, Sept 13–15, pp.
385
392
.10.3182/20100913-3-US-2015.00046
35.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
You do not currently have access to this content.