Abstract

A new method is proposed for robust partial quadratic eigenvalue assignment problem (RPQEAP) with repeated prescribed eigenvalues. We first derive a result on the solution of partial quadratic eigenvalue assignment problem, which leads to the partial Schur form of the closed-loop system. Then by minimizing the normality departure of the partial Schur form of the closed-loop system, we assign the prescribed eigenvalues step by step such that the closed-loop system is as robust as possible. Our method allows the prescribed eigenvalues are repeated. Moreover, the proposed method does not use the unchanged eigenpairs of the open-loop system and avoids transforming the second-order control system to the first-order system. Numerical experiments show that the proposed method is efficient for solving the RPQEAP with repeated eigenvalues.

References

1.
Liu
,
G. P.
, and
Patton
,
R. J.
,
1999
,
Eigenstructure Assignment for Control System Design
,
Wiley
,
New York
.
2.
Mottershead
,
J. E.
, and
Ram
,
Y. M.
,
2006
, “
Inverse Eigenvalue Problems in Vibration Absorption: Passive Modification and Active Control
,”
Mech. Syst. Signal Process.
,
20
(
1
), pp.
5
44
.10.1016/j.ymssp.2005.05.006
3.
Datta
,
B. N.
,
Elhay
,
S.
, and
Ram
,
Y. M.
,
1997
, “
Orthogonality and Partial Pole Placement for the Symmetric Definite Quadratic Pencil
,”
Linear Algebra Appl.
,
257
, pp.
29
48
.10.1016/S0024-3795(96)00036-5
4.
Ram
,
Y. M.
, and
Elhay
,
S.
,
2000
, “
Pole Assignment in Vibratory Systems by Multi-Input Control
,”
J. Sound Vib.
,
230
(
2
), pp.
309
321
.10.1006/jsvi.1999.2622
5.
Datta
,
B. N.
, and
Sarkissian
,
D. R.
,
2001
, “
Theory and Computation of Some Inverse Eigenvalue Problems for Quadratic Pencil
,”
Contemp. Math.
,
280
, pp.
221
240
.10.1090/conm/280
6.
Xu
,
S. F.
, and
Qian
,
J.
,
2008
, “
Orthogonal Basis Selection Method for Robust Partial Eigenvalue Assignment Problem in Second-Order Control Systems
,”
J. Sound Vib.
,
317
(
1–2
), pp.
1
19
.10.1016/j.jsv.2008.03.002
7.
Chan
,
H. C.
,
Lam
,
J.
, and
Ho
,
D. W. C.
,
1997
, “
Robust Eigenvalue Assignment in Second-Order Systems: A Gradient Flow Approach
,”
Optim. Control Appl. Methods
,
18
(
4
), pp.
283
296
.10.1002/(SICI)1099-1514(199707/08)18:4<283::AID-OCA603>3.0.CO;2-Q
8.
Bai
,
Z. J.
,
Datta
,
B. N.
, and
Wang
,
J. W.
,
2010
, “
Robust and Minimum Norm Partial Quadratic Eigenvalue Assignment in Vibrating Systems: A New Optimization Approach
,”
Mech. Syst. Signal Process.
,
24
(
3
), pp.
766
783
.10.1016/j.ymssp.2009.09.014
9.
Brahma
,
S.
, and
Datta
,
B. N.
,
2009
, “
An Optimization Approach for Minimum Norm and Robust Partial Quadratic Eigenvalue Assignment Problems for Vibrating Structures
,”
J. Sound Vib.
,
324
(
3–5
), pp.
471
489
.10.1016/j.jsv.2009.02.020
10.
Ram
,
Y. M.
, and
Mottershead
,
J. E.
,
2007
, “
Receptance Method in Active Vibration Control
,”
AIAA J.
,
45
(
3
), pp.
562
567
.10.2514/1.24349
11.
Lu
,
M.
, and
Bai
,
Z. J.
,
2021
, “
A Modified Optimization Method for Robust Partial Quadratic Eigenvalue Assignment Using Receptances and System Matrices
,”
Appl. Numer. Math.
,
159
, pp.
73
92
.10.1016/j.apnum.2020.08.018
12.
Seyranian
,
A. P.
,
Lund
,
E.
, and
Olhoff
,
N.
,
1994
, “
Multiple Eigenvalues in Structural Optimization Problems
,”
Struct. Multidiscip. Optim.
,
8
(
4
), pp.
207
227
.10.1007/BF01742705
13.
Olhoff
,
N.
, and
Rasmussen
,
S. H.
,
1977
, “
On Single and Bimodal Optimum Buckling Loads of Clamped Columns
,”
Int. J. Solids Struct.
,
13
(
7
), pp.
605
614
.10.1016/0020-7683(77)90043-9
14.
Duan
,
G. R.
, and
Wu
,
Y. L.
,
2005
, “
Robust Pole Assignment in Matrix Descriptor Second-Order Linear Systems
,”
Trans. Inst. Meas. Control
,
27
(
4
), pp.
279
295
.10.1191/0142331205tm149oa
15.
Ntogramatzidis
,
L.
,
Nguyen
,
T.
, and
Schmid
,
R.
,
2015
, “
Repeated Eigenstructure Assignment for Controlled Invariant Subspaces
,”
Eur. J. Control
,
26
, pp.
1
11
.10.1016/j.ejcon.2015.07.003
16.
Schmid
,
R.
,
Ntogramatzidis
,
L.
,
Nguyen
,
T.
, and
Pandey
,
A.
,
2014
, “
A Unified Method for Optimal Arbitrary Pole Placement
,”
Automatica
,
50
(
8
), pp.
2150
2154
.10.1016/j.automatica.2014.06.006
17.
Guo
,
Z. C.
,
Qian
,
J.
,
Cai
,
Y. F.
, and
Xu
,
S. F.
,
2016
, “
Refined Schur Method for Robust Pole Assignment With Repeated Poles
,”
IEEE Trans. Autom. Control
,
61
(
9
), pp.
2370
2385
.10.1109/TAC.2015.2491558
18.
Abdelaziz
,
T. H. S.
, and
Valášek
,
M.
,
2005
, “
Eigenstructure Assignment by Proportional-Plus-Derivative Feedback for Second-Order Linear Control Systems
,”
Kybernetika
,
41
(
5
), pp.
661
676
.https://dml.cz/bitstream/handle/10338.dmlcz/135684/Kybernetika_41-2005-5_7.pdf
19.
Yu
,
P.
, and
Zhang
,
G.
,
2016
, “
Eigenstructure Assignment and Impulse Elimination for Singular Second-Order System Via Feedback Control
,”
IET Control Theory Appl.
,
10
(
8
), pp.
869
876
.10.1049/iet-cta.2015.1189
20.
Bai
,
Z. J.
,
Lu
,
M.
, and
Wan
,
Q. Y.
,
2018
, “
Minimum Norm Partial Quadratic Eigenvalue Assignment for Vibrating Structures Using Receptances and System Matrices
,”
Mech. Syst. Signal Process.
,
112
, pp.
265
279
.10.1016/j.ymssp.2018.04.029
21.
Bai
,
Z. J.
,
Yang
,
J. K.
, and
Datta
,
B. N.
,
2016
, “
Robust Partial Quadratic Eigenvalue Assignment With Time Delay Using the Receptance and the System Matrices
,”
J. Sound Vib.
,
384
, pp.
1
14
.10.1016/j.jsv.2016.08.002
22.
Ho
,
D. W. C.
,
Lam
,
J.
, and
Xu
,
J. H.
,
1998
, “
Robust Approximate Pole Assignment for Second-Order Systems: Neural Network Computation
,”
J. Guid. Control Dyn.
,
21
(
6
), pp.
923
929
.10.2514/2.4326
23.
Stewart
,
G. W.
, and
Sun
,
J. G.
,
1990
,
Matrix Perturbation Theory
,
Academic Press
, London.
24.
Sun
,
J. G.
,
1980
, “
Invariant Subspaces and Generalized Invariant Subspaces (I) Existence and Uniqueness Theorems
,”
Math. Numerica Sin.
,
2
(
1
), pp.
1
13
.
You do not currently have access to this content.