Abstract

In this paper, we propose a globally stable adaptive controller for the human shank motion tracking problem that appears in neuromuscular electrical stimulation systems. The control problem is complicated by the fact that the mathematical model of the human shank dynamics is nonlinear and the parameters enter in a nonlinear and nonseparable form. To solve the problem, we first derive a nonlinearly parameterized regressor equation (NLPRE) that is used with a new parameter estimator specifically tailored for this NLPRE. This estimator is then combined with a classical feedback linearizing controller to ensure the tracking objective is globally achieved. A further contribution of the paper is the proof that parameter convergence, and consequent global tracking, is guaranteed with an extremely weak interval excitation requirement. A simulation study comparing the proposed adaptive controller with existing ones in the literature shows comparable human shank tracking performance but with fewer parameter estimates and without requiring knowledge of bounds for the unknown parameters.

References

1.
Winter
,
D.
,
2009
,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
Hoboken, NJ
.
2.
Merad
,
M.
,
Downey
,
R. J.
,
Obuz
,
S.
, and
Dixon
,
W. E.
,
2016
, “
Isometric Torque Control for Neuromuscular Electrical Stimulation With Time-Varying Input Delay
,”
IEEE Trans. Control Syst. Technol.
,
24
(
3
), pp.
971
978
.10.1109/TCST.2015.2470637
3.
Riess
,
J.
, and
Abbas
,
J.
,
2000
, “
Adaptive Neural Network Control of Cyclic Movements Using Functional Neuromuscular Stimulation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
8
(
1
), pp.
42
52
.10.1109/86.830948
4.
Sharma
,
N.
,
Gregory
,
C.
,
Johnson
,
M.
, and
Dixon
,
W.
,
2012
, “
Closed-Loop Neural Network-Based NMES Control for Human Limb Tracking
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
712
725
.10.1109/TCST.2011.2125792
5.
Yang
,
R.
,
de Queiroz
,
M.
, and
Li
,
M.
,
2018
, “
Neural Network-Based Control of Neuromuscular Electrical Stimulation With Input Saturation
,”
Proceedings of IFAC Conference on Cyber-Physical & Human-Systems
,
Miami, FL
, Dec. 14–15, pp.
178
183
.
6.
Jezernik
,
S.
,
Wassink
,
R.
, and
Keller
,
T.
,
2004
, “
Sliding Mode Closed Loop Control of FES: Controlling the Shank Movement
,”
IEEE Trans. Biomed. Eng.
,
51
(
2
), pp.
263
272
.10.1109/TBME.2003.820393
7.
Sharma
,
N.
,
Stegath
,
K.
,
Gregory
,
C.
, and
Dixon
,
W.
,
2009
, “
Nonlinear Neuromuscular Electrical Stimulation Tracking Control of a Human Limb
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
6
), pp.
576
584
.10.1109/TNSRE.2009.2023294
8.
Yang
,
R.
, and
de Queiroz
,
M.
,
2018
, “
Robust Adaptive Control of the Nonlinearly Parameterized Human Shank Dynamics for Electrical Stimulation Applications
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
8
), p.
081019
.10.1115/1.4039366
9.
Sastry
,
S.
, and
Bodson
,
M.
,
1989
,
Adaptive Control: Stability, Convergence and Robustness
,
Prentice Hall
,
New Jersey
.
10.
Ortega
,
R.
,
Romero
,
J. G.
, and
Aranovskiy
,
S.
,
2022
, “
A New Least Squares Parameter Estimator for Nonlinear Regression Equations With Relaxed Excitation Conditions and Forgetting Factor
,”
Syst. Control Lett.
,
169
, p.
105377
.10.1016/j.sysconle.2022.105377
11.
Aranovskiy
,
S.
,
Bobtsov
,
A.
,
Ortega
,
R.
, and
Pyrkin
,
A.
,
2017
, “
Performance Enhancement of Parameter Estimators Via Dynamic Regressor Extension and Mixing
,”
IEEE Trans. Autom. Control
,
62
(
7
), pp.
3546
3550
.10.1109/TAC.2016.2614889
12.
Kreisselmeier
,
G.
, and
Rietze-Augst
,
G.
,
1990
, “
Richness and Excitation on an Interval—With Application to Continuous-Time Adaptive Control
,”
IEEE Trans. Autom. Control
,
35
(
2
), pp.
165
171
.10.1109/9.45172
13.
Tao
,
G.
,
2003
,
Adaptive Control Design and Analysis
, Vol.
37
,
Wiley
,
Hoboken, NJ
.
14.
Schauer
,
T.
,
Negard
,
N.
,
Previdi
,
F.
,
Hunt
,
K.
,
Fraser
,
M.
,
Ferchland
,
E.
, and
Raisch
,
J.
,
2005
, “
Online Identification and Nonlinear Control of the Electrically Stimulated Quadriceps Muscle
,”
Control Eng. Pract.
,
13
(
9
), pp.
1207
1219
.10.1016/j.conengprac.2004.10.006
15.
Ortega
,
R.
,
Loria
,
A.
,
Nicklasson
,
P. J.
, and
Sira–Ramirez
,
H.
,
1998
,
Passivity–Based Control of Euler–Lagrange Systems
, Communications and Control Engineering,
Springer-Verlag
,
Berlin
.
16.
Ortega
,
R.
,
Aranovskiy
,
S.
,
Pyrkin
,
A.
,
Astolfi
,
A.
, and
Bobtsov
,
A.
,
2021
, “
New Results on Parameter Estimation Via Dynamic Regressor Extension and Mixing: Continuous and Discrete-Time Cases
,”
IEEE Trans. Autom. Control
,
66
(
5
), pp.
2265
2272
.10.1109/TAC.2020.3003651
You do not currently have access to this content.