Abstract

Hydraulic actuation systems have a broad range of applications covering almost all areas of manufacturing and production and also the service industry. However, it is usual for systems to have low energy efficiency. In recent decades, due to global environmental concerns, research in the field of digital hydraulics to develop more efficient hydraulic systems has increased. In this paper, an analysis of the possible combinations of chambers in a multichamber cylinder is presented. A mathematical expression is derived to verify the total number of combinations of chambers that it is possible to achieve for a cylinder with four or more chambers and that result in different constant velocities without cavitation occurring. In addition, a digital hydraulic pump is considered a supply unit and, since it has discrete output flow rates, an analytical method to combine the pump with a multichamber cylinder is developed resulting in a total number of cylinder velocities with a required resolution. For application in a positioning system, design guidelines for an actuator using a cylinder with four chambers and a digital hydraulic pump with three fixed displacement units are presented in which an optimization algorithm for the calculation of the cylinder areas and the volumetric displacement of the pumps is applied. The proposed approaches were applied to design a proof-of-concept and the experimental values presented very good accuracy when compared with the results obtained with the model. Closed-loop position control responses show that the system can achieve the required setting time with a smooth movement and steady-state error of around 1 mm.

References

1.
Zhang
,
Q.
,
Kong
,
X.
,
Yu
,
B.
,
Ba
,
K.
,
Jin
,
Z.
, and
Kang
,
Y.
,
2020
, “
Review and Development Trend of Digital Hydraulic Technology
,”
J. Appl. Sci.
,
10
(
2
), p.
579
.10.3390/app10020579
2.
Maré
,
J. C.
,
2016
,
Aerospace Actuators 1: Needs, Reliability and Hydraulic Power Solutions,
Wiley, Hoboken, NJ
.
3.
Rongjie
,
K.
,
Zongxia
,
J.
,
Shaoping
,
W.
, and
Lisha
,
C.
,
2009
, “
Design and Simulation of Electro-Hydrostatic Actuator With a Built-In Power Regulator
,”
Chin. J. Aeronautics
,
22
(
6
), pp.
700
706
.10.1016/S1000-9361(08)60161-2
4.
Linjama
,
M.
, and
Vilenius
,
M.
,
2008
,
Digital Hydraulics – Towards Perfect Valve Technology
,
Digitalna Hidravlika
,
Ventil
, pp.
138
148
.
5.
Linjama
,
M.
,
2011
, “
Digital Fluid Power-State of the Art
,”
The Twelfth Scandinavian International Conference on Fluid Power
, Tampere, Finland, May 18–20, pp.
1
23
.
6.
Belan
,
H. B.
,
Locateli
,
C. C.
,
Lantto
,
B.
,
Krus
,
P.
, and
De Negri
,
V. J.
,
2015
, “
Digital Secondary Control Architecture for Aircraft Application
,”
The Seventh Workshop on Digital Fluid Power
, Linz, Austria, February 26–27, pp.
21
39
.
7.
Scheidl
,
R.
,
Kogler
,
H.
, and
Winkler
,
B.
,
2013
, “
Hydraulic Switching Control - Objectives, Concepts, Challenges and Potential Applications
,”
Mag. Hydraulics Pneumatics Tribol. Ecology Sensorics Mechatronics
,
1
(
1
), pp.
1
13
.https://www.proquest.com/openview/13695b6b00aba7fea5d7b788574f6d2c/1?cbl=136245&pqorigsite=gscholar&parentSessionId=vPJ309uVGXRCC7qq8ThiEl78ailaJt%2FtCrfBSMbuQkg%3D
8.
De Negri
,
V. J.
,
Nostrani
,
M. P.
,
Wang
,
P.
,
Johnston
,
D. N.
, and
Plummer
,
A.
,
2015
, “
Modelling and Analysis of Hydraulic Step-Down Switching Converters
,”
Int. J. Fluid Power
,
16
(
2
), pp.
111
121
.10.1080/14399776.2015.1067482
9.
Yuan
,
C.
,
Pan
,
M.
, and
Plummer
,
A.
,
2020
, “
A Review of Switched Inertance Hydraulic Converter Technology
,”
ASME J. Dyn. Syst., Meas. Control
,
142
(
5
), p. 050801.10.1115/1.4046103
10.
Yuan
,
C.
,
Plummer
,
A.
, and
Pan
,
M.
,
2022
, “
Switching Characteristics of a High-Speed Rotary Valve for Switched Inertance Hydraulic Converters
,”
J. Syst. Control Eng.
,
236
(
7
), pp.
1421
1441
.10.1177/09596518221082445
11.
Linjama
,
M.
, and
Vilenius
,
M.
,
2005
, “
Improved Digital Hydraulic Tracking Control of Water Hydraulic Cylinder Drive
,”
Int. J. Fluid Power.
,
6
(
1
), pp.
29
39
.10.1080/14399776.2005.10781209
12.
Linjama
,
M.
,
Paloniitty
,
M.
,
Tiainen
,
L.
, and
Huhtala
,
K.
,
2015
, “
Mechatronic Design of Digital Hydraulic Micro Valve Package
,”
Dyn. Vibroacoustics Machines
,
106
, pp.
97
107
.10.1016/j.proeng.2015.06.013
13.
Huova
,
M.
,
Aalto
,
A.
,
Linjama
,
M.
, and
Huhtala
,
K.
,
2017
, “
Study of Energy Losses in a Digital Hydraulic Multi-Pressure Actuator
,” The 15th Scandinavian International Conference on Fluid Power
(SICFP'17
), Linköping, Sweden, June 7–9, pp.
1
10
.10.3384/ecp17144214
14.
Rampen
,
W.
,
2006
,
Gearless Transmissions for Large Wind Turbines–the History and Future of Hydraulic Drives
, Eigth German Wind Energy Conference,
Dewek Bremen
, Germany.
15.
Heikkilä
,
M.
,
Tammisto
,
J.
,
Huova
,
M.
,
Huhtala
,
K.
, and
Linjama
,
M.
,
2010
, “
Experimental Evaluation of a Piston-Type Digital Pump-Motor-Transformer With Two Independent Outlets
,”
ASME/BATH Symposium on Fluid Power and Motion Control
, Bath, UK, Sept. 15–17, pp.
83
97
.
16.
Theissen
,
H.
,
Gels
,
S.
, and
Murrenhoff
,
H.
,
2013
, “
Reducing Energy Losses in Hydraulic Pumps
,”
International Conference on Fluid Power Transmission and Control - ICFP
, Hangzhou, China, Apr. 9–11, pp.
77
81
.
17.
Larsson
,
L. V.
,
Lejonberg
,
R.
, and
Ericson
,
L.
,
2021
, “
Control Optimisation of a Pump-Controlled Hydraulic System Using Digital Displacement Pumps
,”
The 17th Scandinavian International Conference on Fluid Power (SICFP'21)
, Linköping, Sweden, May 31–June 2, pp.
48
59
.
18.
Rampen
,
W. H. S.
,
1992
, “
The Digital Displacement Hydraulic Piston Pump
,” Ph.D. thesis,
The University of Edinburgh
.
19.
Ehsan
,
M.
,
Rampen
,
W. H. S.
, and
Salter
,
S. H.
,
1997
, “
Modeling of Digital Displacement Pump-Motors and Their Application as Hydraulic Drives for Nonuniform Loads
,”
ASME J. Dyn. Syst. Meas. Control
,
122
(
1
), pp.
210
215
.10.1115/1.482444
20.
Heitzig
,
S.
, and
Theissen
,
H.
,
2011
, “
Aspects of Digital Pumps in Closed Circuits
,”
The Fourth Workshop on Digital Fluid Power
, Austria, Linz, Sept. 21–22, pp.
39
50
.
21.
Heitzig
,
S.
,
Sgro
,
S.
, and
Theissen
,
H.
,
2012
, “
Energy Efficiency of Hydraulic Systems With Shared Digital Pumps
,”
Int. J. Fluid Power
,
13
(
3
), pp.
49
57
.10.1080/14399776.2012.10781060
22.
Locateli
,
C. C.
,
Teixeira
,
P. L.
,
De Pieri
,
E. R.
,
Krus
,
P.
, and
De Negri
,
V. J.
,
2014
, “
Digital Hydraulic System Using Pumps and on/Off Valves Controlling the Actuator
,”
ASME
Paper No. FPNI2014-7839.10.1115/FPNI2014-7839
23.
Pynttäri
,
O. N.
,
Linjama
,
M.
,
Laamanen
,
A.
, and
Huhtala
,
K.
,
2014
, “
Parallel Pump-Controlled Multi-Chamber Cylinder
,”
ASME
Paper No. FPMC2014-7820
. 10.1115/FPMC2014-7820
24.
Dell'amico
,
A.
,
Simon
,
D.
,
Ward
,
S.
,
Pinto
,
L. P. G.
,
Lantto
,
B.
,
De Negri
,
V.
, and
Krus
,
P.
,
2018
, “
A Hybrid Digital-Proportional Hydraulic Actuation System for Aircraft Flight Control
,”
31st Congress of the International Council of the Aeronautical Sciences
, Belo Horizonte, Brazil, Sept. 9–14, pp.
1
10
.https://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0052_paper.pdf
25.
Heybroek
,
K.
, and
Sahlman
,
M.
,
2018
, “
A Hydraulic Hybrid Excavator Based on Multi-Chamber Cylinders and Secondary Control – Design and Experimental Validation
,”
Int. J. Fluid Power
,
19
(
2
), pp.
91
105
.10.1080/14399776.2018.1447065
26.
Jaiswal
,
S.
,
Sopanen
,
J.
, and
Aki
,
M.
,
2021
, “
Efficiency Comparison of Various Friction Models of a Hydraulic Cylinder in the Framework of Multibody System Dynamics
,”
Mech. Syst. Struct. Nonlinear Dyn.
,
104
(
4
), pp.
3497
3515
.10.1007/s11071-021-06526-9
27.
Nostrani
,
M. P.
,
Dell'amico
,
A.
,
Lantto
,
B.
,
Krus
,
P.
, and
De Negri
,
V. J.
,
2019
, “
An Aircraft Actuator Driven by Digital Hydraulic Pumps
,”
Proceedings of the XV International Symposium on Dynamic Problems of Mechanics
, Buzios, RJ, Brazil, Mar. 10–15, pp. 1–13.
28.
De Negri
,
V. J.
,
Ramos Filho
,
J. R. B.
, and
Souza
,
A. D. C. D.
,
2008
, “
A Design Method for Hydraulic Positioning Systems
,”
51st National Conference on Fluid Power (NCFP)
, Las Vegas, Mar. 12–14, pp.
669
679
.
29.
Muraro
,
I.
,
Teixeira
,
P. L.
, and
De Negri
,
V. J.
,
2013
, “
Effect of Proportional Valves and Cylinders on the Behavior of Hydraulic Positioning Systems
,”
ASME
Paper No. FPMC2013-4496.10.1115/FPMC2013-4496
30.
Nostrani
,
M. P.
,
2021
, “
Development of a Digital Electro Hydrostatic Actuator for Application in Aircraft Flight Control Surfaces
,” Ph.D. thesis,
Federal University of Santa Catarina - POSMEC. Florianópolis
, p.
192
.
You do not currently have access to this content.