Abstract

This paper describes the design and successful implementation of a constrained model predictive controller with integral action for the control of a Twin Rotor MIMO System (TRMS). The integral action guarantees zero steady-state error in set-point tracking with robustness toward perturbations of the nominal system parameters. In addition to saturation constraints on the input variables, hard constraints are imposed on the controlled output variables, i.e., on pitch and yaw angular positions, to avoid collisions with obstacles. The model predictive controller was designed using a high-fidelity nonlinear model of the TRMS developed in previous work. As an intermediate step, exact linearized models of the TRMS are obtained and their closed-form expressions are reported. The controller was tested experimentally, also showing its effectiveness in ensuring actual collision avoidance by the TRMS when physical obstacles were present.

References

1.
López-Martínez
,
M.
,
Ortega
,
M. G.
,
Vivas
,
C.
, and
Rubio
,
F. R.
,
2007
, “
Nonlinear l2 Control of a Laboratory Helicopter With Variable Speed Rotors
,”
Automatica
,
43
(
4
), pp.
655
661
.10.1016/j.automatica.2006.10.013
2.
Wen
,
P.
, and
Lu
,
T. W.
,
2008
, “
Decoupling Control of a Twin Rotor MIMO System Using Robust Deadbeat Control Technique
,”
IET Control Theory Appl.
,
2
(
11
), pp.
999
1007
.10.1049/iet-cta:20070335
3.
Mullhaupt
,
P.
,
Srinivasan
,
B.
,
Lévine
,
J.
, and
Bonvin
,
D.
,
2008
, “
Control of the Toycopter Using a Flat Approximation
,”
IEEE Trans. Control Syst. Technol.
,
16
(
5
), pp.
882
896
.10.1109/TCST.2007.916333
4.
Mondal
,
S.
, and
Mahanta
,
C.
,
2012
, “
Adaptive Second-Order Sliding Mode Controller for a Twin Rotor Multi-Input–Multi-Output System
,”
IET Control Theory Appl.
,
6
(
14
), pp.
2157
2167
.10.1049/iet-cta.2011.0478
5.
Rotondo
,
D.
,
Nejjari
,
F.
, and
Puig
,
V.
,
2013
, “
Quasi–LPV Modeling, Identification and Control of a Twin Rotor MIMO System
,”
Control Eng. Pract.
,
21
(
6
), pp.
829
846
.10.1016/j.conengprac.2013.02.004
6.
Belmonte
,
L.
,
Morales
,
R.
,
Fernández-Caballero
,
A.
, and
Somolinos
,
J.
,
2016
, “
Robust Decentralized Nonlinear Control for a Twin Rotor MIMO System
,”
Sensors
,
16
(
8
), p.
1160
.10.3390/s16081160
7.
Roman
,
R. C.
,
Radac
,
M. B.
, and
Precup
,
R. E.
,
2016
, “
Multi-Input-Multi-Output System Experimental Validation of Model-Free Control and Virtual Reference Feedback Tuning Techniques
,”
IET Control Theory Appl.
,
10
(
12
), pp.
1395
1403
.10.1049/iet-cta.2016.0028
8.
Pandey
,
S. K.
,
Dey
,
J.
, and
Banerjee
,
S.
,
2018
, “
Design of Robust Proportional-Integral-Derivative Controller for Generalized Decoupled Twin Rotor Multi-Input-Multi-Output System With Actuator Non-Linearity
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
232
(
8
), pp.
971
982
.10.1177/0959651818771487
9.
Grüne
,
L.
, and
Pannek
,
J.
,
2017
,
Nonlinear Model Predictive Control: Theory and Algorithms
,
Springer International Publishing, Cham, Switzerland.
10.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M.
,
2017
,
Model Predictive Control: Theory, Computation, and Design
,
Nob Hill Publishing
,
Madison, WI
.
11.
Propoi
,
A. I.
,
1963
, “
Application of Linear Programming Methods for the Synthesis of Automatic Sampled-Data Systems
,”
Avtomat. i Telemekh
,
24
(
7
), pp.
912
920
.http://mi.mathnet.ru/at11905
12.
Richalet
,
J.
,
Rault
,
A.
,
Testud
,
J.
, and
Papon
,
J.
,
1978
, “
Model Predictive Heuristic Control: Applications to Industrial Processes
,”
Automatica
,
14
(
5
), pp.
413
428
.10.1016/0005-1098(78)90001-8
13.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.10.1016/S0967-0661(02)00186-7
14.
Lee
,
J. H.
,
2011
, “
Model Predictive Control: Review of the Three Decades of Development
,”
Int. J. Control, Autom. Syst.
,
9
(
3
), pp.
415
424
.10.1007/s12555-011-0300-6
15.
Di Cairano
,
S.
,
Bernardini
,
D.
,
Bemporad
,
A.
, and
Kolmanovsky
,
I. V.
,
2014
, “
Stochastic MPC With Learning for Driver-Predictive Vehicle Control and Its Application to Hev Energy Management
,”
IEEE Trans. Control Syst. Technol.
,
22
(
3
), pp.
1018
1031
.10.1109/TCST.2013.2272179
16.
Oleinikov
,
A.
,
Kusdavletov
,
S.
,
Shintemirov
,
A.
, and
Rubagotti
,
M.
,
2021
, “
Safety-Aware Nonlinear Model Predictive Control for Physical Human-Robot Interaction
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
5665
5672
.10.1109/LRA.2021.3083581
17.
Bordons
,
C.
, and
Montero
,
C.
,
2015
, “
Basic Principles of MPC for Power Converters: Bridging the Gap Between Theory and Practice
,”
IEEE Ind. Electron. Mag.
,
9
(
3
), pp.
31
43
.10.1109/MIE.2014.2356600
18.
Oldewurtel
,
F.
,
Parisio
,
A.
,
Jones
,
C. N.
,
Gyalistras
,
D.
,
Gwerder
,
M.
,
Stauch
,
V.
,
Lehmann
,
B.
, and
Morari
,
M.
,
2012
, “
Use of Model Predictive Control and Weather Forecasts for Energy Efficient Building Climate Control
,”
Energy Build.
,
45
, pp.
15
27
.10.1016/j.enbuild.2011.09.022
19.
Mayne
,
D. Q.
,
2014
, “
Model Predictive Control: Recent Developments and Future Promise
,”
Automatica
,
50
(
12
), pp.
2967
2986
.10.1016/j.automatica.2014.10.128
20.
Camacho
,
E. F.
,
Ramírez
,
D. R.
,
Limón
,
D.
,
De La Peña
,
D. M.
, and
Alamo
,
T.
,
2010
, “
Model Predictive Control Techniques for Hybrid Systems
,”
Annu. Reviews Control
,
34
(
1
), pp.
21
31
.10.1016/j.arcontrol.2010.02.002
21.
Allan
,
D. A.
,
Bates
,
C. N.
,
Risbeck
,
M. J.
, and
Rawlings
,
J. B.
,
2017
, “
On the Inherent Robustness of Optimal and Suboptimal Nonlinear MPC
,”
Syst. Control Lett.
,
106
, pp.
68
78
.10.1016/j.sysconle.2017.03.005
22.
Mayne
,
D. Q.
,
Rawlings
,
J. B.
,
Rao
,
C. V.
, and
Scokaert
,
P. O.
,
2000
, “
Constrained Model Predictive Control: Stability and Optimality
,”
Automatica
,
36
(
6
), pp.
789
814
.10.1016/S0005-1098(99)00214-9
23.
Kantas
,
N.
,
Maciejowski
,
J. M.
, and
Lecchini-Visintini
,
A.
,
2009
, “
Sequential Monte Carlo for Model Predictive Control
,”
Nonlinear Model Predictive Control: Towards New Challenging Applications
,
Springer-Verlag, Berlin Heidelber, pp.
263
273
.
24.
Mesbah
,
A.
,
2016
, “
Stochastic Model Predictive Control: An Overview and Perspectives for Future Research
,”
IEEE Control Syst. Mag.
,
36
(
6
), pp.
30
44
.10.1109/MCS.2016.2602087
25.
Rubagotti
,
M.
,
Patrinos
,
P.
, and
Bemporad
,
A.
,
2014
, “
Stabilizing Linear Model Predictive Control Under Inexact Numerical Optimization
,”
IEEE Trans. Autom. Control
,
59
(
6
), pp.
1660
1666
.10.1109/TAC.2013.2293451
26.
Berberich
,
J.
,
Köhler
,
J.
,
Müller
,
M. A.
, and
Allgöwer
,
F.
,
2021
, “
Data-Driven Model Predictive Control With Stability and Robustness Guarantees
,”
IEEE Trans. Autom. Control
,
66
(
4
), pp.
1702
1717
.10.1109/TAC.2020.3000182
27.
Viswanathan
,
S. P.
,
Sanyal
,
A. K.
, and
Samiei
,
E.
,
2018
, “
Integrated Guidance and Feedback Control of Underactuated Robotics System in SE (3)
,”
J. Intell. Rob. Syst.
,
89
(
1–2
), pp.
251
263
.10.1007/s10846-017-0547-0
28.
Chen
,
T.
,
Babanin
,
A.
,
Muhammad
,
A.
,
Chapron
,
B.
, and
Chen
,
C.
,
2020
, “
Modified Evolved Bat Algorithm of Fuzzy Optimal Control for Complex Nonlinear Systems
,”
Rom. J. Inf. Sci. Technol
,
T
(
23
), pp.
T28
T40
.https://www.romjist.ro/full-texts/paper672.pdf
29.
Precup
,
R.-E.
,
Roman
,
R.-C.
, and
Safaei
,
A.
,
2022
,
Data-Driven Model-Free Controllers
,
CRC Press
, Boca Raton, FL.
30.
Bemporad
,
A.
,
Morari
,
M.
,
Dua
,
V.
, and
Pistikopoulos
,
E. N.
,
2002
, “
The Explicit Linear Quadratic Regulator for Constrained Systems
,”
Automatica
,
38
(
1
), pp.
3
20
.10.1016/S0005-1098(01)00174-1
31.
Oliveri
,
A.
,
Barcelli
,
D.
,
Bemporad
,
A.
,
Genuit
,
B.
,
Heemels
,
M.
,
Poggi
,
T.
,
Rubagotti
,
M.
, and
Storace
,
M.
,
2012
, “
MOBY-DIC: A MATLAB Toolbox for Circuit-Oriented Design of Explicit MPC
,”
Proceedings of IFAC Conference on Nonlinear Model Predictive Control,
August 23–27, Noordwijkerhout, The Netherlands, pp.
218
225
.10.3182/20120823-5-NL-3013.00034
32.
Rubagotti
,
M.
,
Barcelli
,
D.
, and
Bemporad
,
A.
,
2014
, “
Robust Explicit Model Predictive Control Via Regular Piecewise-Affine Approximation
,”
Int. J. Control
,
87
(
12
), pp.
2583
2593
.10.1080/00207179.2014.935958
33.
Rahideh
,
A.
, and
Shaheed
,
M. H.
,
2011
, “
Stable Model Predictive Control for a Nonlinear System
,”
J. Franklin Inst.
,
348
(
8
), pp.
1983
2004
.10.1016/j.jfranklin.2011.05.015
34.
Rahideh
,
A.
, and
Shaheed
,
M. H.
,
2012
, “
Constrained Output Feedback Model Predictive Control for Nonlinear Systems
,”
Control Eng. Pract.
,
20
(
4
), pp.
431
443
.10.1016/j.conengprac.2011.12.003
35.
Duţescu
,
D. A.
,
Radac
,
M. B.
, and
Precup
,
R. E.
,
2017
, “
Model Predictive Control of a Nonlinear Laboratory Twin Rotor Aero-Dynamical System
,”
IEEE International Symposium on Applied Machine Intelligence and Informatics,
Herl’any, Slovakia, Jan. 26–28, pp.
37
42
.10.1109/SAMI.2017.7880339
36.
Raghavan
,
R.
, and
Thomas
,
S.
,
2017
, “
Practically Implementable Model Predictive Controller for a Twin Rotor Multi-Input Multi-Output System
,”
J. Control, Autom. Electr. Syst.
,
28
(
3
), pp.
358
370
.10.1007/s40313-017-0311-5
37.
Tahir
,
F.
,
Ahmed
,
Q.
, and
Bhatti
,
A. I.
,
2013
, “
Real-Time Switched Model Predictive Control of a Twin Rotor System
,”
IEEE Conference on Decision and Control
, Florence, Italy, Dec. 10–13, pp.
4847
4852
.10.1109/CDC.2013.6760649
38.
Pannocchia
,
G.
,
2015
, “
Offset–Free Tracking MPC: A Tutorial Review and Comparison of Different Formulations
,” European Control Conference (
ECC
), Linz, Austria, July 15–17, pp.
527
532
.10.1109/ECC.2015.7330597
39.
Ferramosca
,
A.
,
González
,
A. H.
, and
Limon
,
D.
,
2017
, “
Offset–Free Multi-Model Economic Model Predictive Control for Changing Economic Criterion
,”
J. Process Control
,
54
, pp.
1
13
.10.1016/j.jprocont.2017.02.014
40.
Incremona
,
G. P.
,
Messori
,
M.
,
Toffanin
,
C.
,
Cobelli
,
C.
, and
Magni
,
L.
,
2018
, “
Model Predictive Control With Integral Action for Artificial Pancreas
,”
Control Eng. Pract.
,
77
, pp.
86
94
.10.1016/j.conengprac.2018.05.006
41.
Abdelrahem
,
M.
,
Hackl
,
C. M.
,
Kennel
,
R.
, and
Rodriguez
,
J.
,
2019
, “
Efficient Direct-Model Predictive Control With Discrete-Time Integral Action for PMSGs
,”
IEEE Trans. Energy Convers.
,
34
(
2
), pp.
1063
1072
.10.1109/TEC.2018.2872626
42.
Ramírez
,
R. O.
,
Espinoza
,
J. R.
,
Baier
,
C. R.
,
Rivera
,
M.
,
Villarroel
,
F.
,
Guzman
,
J. I.
, and
Melín
,
P. E.
,
2019
, “
Finite-State Model Predictive Control With Integral Action Applied to a Single-Phase z–Source Inverter
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
7
(
1
), pp.
228
239
.10.1109/JESTPE.2018.2870985
43.
Tastemirov
,
A.
,
Lecchini-Visintini
,
A.
, and
Morales-Viviescas
,
R. M.
,
2017
, “
Complete Dynamic Model of the Twin Rotor MIMO System (TRMS) With Experimental Validation
,”
Control Eng. Pract.
,
66
, pp.
89
98
.10.1016/j.conengprac.2017.06.009
44.
Prempain
,
E.
, and
Lecchini-Visintini
,
A.
,
2018
, “
Dynamic Analysis of a Twin Rotor MIMO System and Control Design
,”
UKACC International Conference,
Sheffield, UK, Sept. 5–7, pp.
87
92
.10.1109/CONT ROL.2018.8516727
45.
Mattingley
,
J.
,
Wang
,
Y.
, and
Boyd
,
S.
,
2010
, “
Code Generation for Receding Horizon Control
,”
IEEE International Symposium on Computer-Aided Control System Design
, Yokohama, Japan, Sept. 8–10, pp.
985
992
.10.1109/CACSD.2010.5612665
46.
Mattingley
,
J.
, and
Boyd
,
S.
,
2012
, “
CVXGEN: A Code Generator for Embedded Convex Optimization
,”
Optim. Eng.
,
13
(
1
), pp.
1
27
.10.1007/s11081-011-9176-9
47.
Mattingley
,
J.
, and
Boyd
,
S.
, “
CVXGEN: Code Generation for Convex Optimization
,” accessed June 21, 2023, https://cvxgen.com
48.
Bryson
,
A. E.
, and
Ho
,
Y. C.
,
1975
,
Applied Optimal Control (Revised Printing)
,
Hemisphere
,
New York
.
You do not currently have access to this content.