Abstract

A computationally efficient model serves as a critical prerequisite for battery performance analysis and advanced battery management algorithm design. Although battery models that capture cell-level behavior have been widely explored in existing literature, electrode-level battery models have received much lesser attention till to date. However, such electrode-level models can significantly increase battery performance and life by enabling electrode-level health-conscious control. Such electrode-level control can effectively expand usable energy and power limits of the battery cells by utilizing the knowledge of individual electrodes’ charge and health. In this context, this paper presents a comprehensive battery model developed with a reference electrode insertion that captures (i) electrode-level charge/discharge dynamics, (ii) stoichiometric and temporal dependencies of electrode-level resistances, (iii) solid electrolyte interface (SEI) layer growth as key degradation phenomenon, and (iv) capacity fade and resistance rise in each electrode due to nominal battery aging. The proposed model is identified, and a preliminary validation is performed utilizing terminal voltage and negative electrode potential data collected from a pouch cell under one continuous cycling and accelerated aging conditions where the cell experienced 14% capacity loss.

References

1.
Han
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
,
Zheng
,
Y.
, and
Li
,
Z.
,
2014
, “
A Comparative Study of Commercial Lithium Ion Battery Cycle Life in Electrical Vehicle: Aging Mechanism Identification
,”
J. Power Sources
,
251
, pp.
38
54
.10.1016/j.jpowsour.2013.11.029
2.
Tsang
,
K.
,
Sun
,
L.
, and
Chan
,
W.
,
2010
, “
Identification and Modelling of Lithium Ion Battery
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2857
2862
.10.1016/j.enconman.2010.06.024
3.
Thirugnanam
,
K.
,
Saini
,
H.
, and
Kumar
,
P.
,
2012
, “
Mathematical Modeling of li-Ion Battery for Charge/Discharge Rate and Capacity Fading Characteristics Using Genetic Algorithm Approach
,” IEEE Transportation Electrification Conference and Expo (
ITEC
), Dearborn, MI, June 18–20, pp.
1
6
.10.1109/ITEC.2012.6243431
4.
Rahman
,
M. A.
,
Anwar
,
S.
, and
Izadian
,
A.
,
2016
, “
Electrochemical Model Parameter Identification of a Lithium-Ion Battery Using Particle Swarm Optimization Method
,”
J. Power Sources
,
307
, pp.
86
97
.10.1016/j.jpowsour.2015.12.083
5.
Doyle
,
M.
,
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell
,”
J. Electrochem. Soc.
,
140
(
6
), pp.
1526
1533
.10.1149/1.2221597
6.
Santhanagopalan
,
S.
,
Guo
,
Q.
,
Ramadass
,
P.
, and
White
,
R. E.
,
2006
, “
Review of Models for Predicting the Cycling Performance of Lithium Ion Batteries
,”
J. Power Sources
,
156
(
2
), pp.
620
628
.10.1016/j.jpowsour.2005.05.070
7.
Colclasure
,
A. M.
, and
Kee
,
R. J.
,
2010
, “
Thermodynamically Consistent Modeling of Elementary Electrochemistry in Lithium-Ion Batteries
,”
Electrochim. Acta
,
55
(
28
), pp.
8960
8973
.10.1016/j.electacta.2010.08.018
8.
Colclasure
,
A. M.
,
Dunlop
,
A. R.
,
Trask
,
S. E.
,
Polzin
,
B. J.
,
Jansen
,
A. N.
, and
Smith
,
K.
,
2019
, “
Requirements for Enabling Extreme Fast Charging of High Energy Density Li-Ion Cells While Avoiding Lithium Plating
,”
J. Electrochem. Soc.
,
166
(
8
), pp.
A1412
A1424
.10.1149/2.0451908jes
9.
Colclasure
,
A. M.
,
Tanim
,
T. R.
,
Jansen
,
A. N.
,
Trask
,
S. E.
,
Dunlop
,
A. R.
,
Polzin
,
B. J.
,
Bloom
,
I.
, et al.,
2020
, “
Electrode Scale and Electrolyte Transport Effects on Extreme Fast Charging of Lithium-Ion Cells
,”
Electrochim. Acta
,
337
, p.
135854
.10.1016/j.electacta.2020.135854
10.
Franco
,
A. A.
,
Rucci
,
A.
,
Brandell
,
D.
,
Frayret
,
C.
,
Gaberscek
,
M.
,
Jankowski
,
P.
, and
Johansson
,
P.
,
2019
, “
Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?
,”
Chem. Rev.
,
119
(
7
), pp.
4569
4627
.10.1021/acs.chemrev.8b00239
11.
Hu
,
Y.
, and
Yurkovich
,
S.
,
2012
, “
Battery Cell State-of-Charge Estimation Using Linear Parameter Varying System Techniques
,”
J. Power Sources
,
198
, pp.
338
350
.10.1016/j.jpowsour.2011.09.058
12.
Lai
,
X.
,
Gao
,
W.
,
Zheng
,
Y.
,
Ouyang
,
M.
,
Li
,
J.
,
Han
,
X.
, and
Zhou
,
L.
,
2019
, “
A Comparative Study of Global Optimization Methods for Parameter Identification of Different Equivalent Circuit Models for Li-Ion Batteries
,”
Electrochim. Acta
,
295
, pp.
1057
1066
.10.1016/j.electacta.2018.11.134
13.
Zhang
,
X.
,
Lu
,
J.
,
Yuan
,
S.
,
Yang
,
J.
, and
Zhou
,
X.
,
2017
, “
A Novel Method for Identification of Lithium-Ion Battery Equivalent Circuit Model Parameters Considering Electrochemical Properties
,”
J. Power Sources
,
345
, pp.
21
29
.10.1016/j.jpowsour.2017.01.126
14.
Rong
,
P.
, and
Pedram
,
M.
,
2006
, “
An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries
,”
IEEE Trans. Very Large Scale Integr. Syst.
,
14
(
5
), pp.
441
451
.10.1109/TVLSI.2006.876094
15.
Rakhmatov
,
D.
,
Vrudhula
,
S.
, and
Wallach
,
D. A.
,
2003
, “
A Model for Battery Lifetime Analysis for Organizing Applications on a Pocket Computer
,”
IEEE Trans. Very Large Scale Integr. Syst.
,
11
(
6
), pp.
1019
1030
.10.1109/TVLSI.2003.819320
16.
Gao
,
W.
,
Zou
,
Y.
,
Sun
,
F.
,
Hu
,
X.
,
Yu
,
Y.
, and
Feng
,
S.
,
2016
, “
Data Pieces-Based Parameter Identification for Lithium-Ion Battery
,”
J. Power Sources
,
328
, pp.
174
184
.10.1016/j.jpowsour.2016.08.018
17.
Li
,
Y.
,
Vilathgamuwa
,
M.
,
Farrell
,
T.
,
Choi
,
S. S.
,
Tran
,
N. T.
, and
Teague
,
J.
,
2019
, “
A Physics-Based Distributed-Parameter Equivalent Circuit Model for Lithium-Ion Batteries
,”
Electrochim. Acta
,
299
, pp.
451
469
.10.1016/j.electacta.2018.12.167
18.
Graule
,
A.
,
Oehler
,
F.
,
Schmitt
,
J.
,
Li
,
J.
, and
Jossen
,
A.
,
2024
, “
Development and Evaluation of a Physicochemical Equivalent Circuit Model for Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
171
(
2
), p.
020503
.10.1149/1945-7111/ad1ec7
19.
Tu
,
H.
,
Moura
,
S.
,
Wang
,
Y.
, and
Fang
,
H.
,
2023
, “
Integrating Physics-Based Modeling With Machine Learning for Lithium-Ion Batteries
,”
Appl. Energy
,
329
, p.
120289
.10.1016/j.apenergy.2022.120289
20.
Wang
,
F.
,
Zhi
,
Q.
,
Zhao
,
Z.
,
Zhai
,
Z.
,
Liu
,
Y.
,
Xi
,
H.
,
Wang
,
S.
, and
Chen
,
X.
,
2025
, “
Inherently Interpretable Physics-Informed Neural Network for Battery Modeling and Prognosis
,”
IEEE Trans. Neural Networks Learn. Syst., pp.
,
36
(
1
), pp.
1145
1159
.10.1109/TNNLS.2023.3329368
21.
Couto
,
L. D.
,
Schorsch
,
J.
,
Nicotra
,
M. M.
, and
Kinnaert
,
M.
,
2016
, “
SOC and SOH Estimation for Li-Ion Batteries Based on an Equivalent Hydraulic Model. Part I: SOC and Surface Concentration Estimation
,” American Control Conference (
ACC
), Boston, MA, July 6–8, pp.
4022
4028
.10.1109/ACC.2016.7525553
22.
Saha
,
B.
,
Poll
,
S.
,
Goebel
,
K.
, and
Christophersen
,
J.
,
2007
, “
An Integrated Approach to Battery Health Monitoring Using Bayesian Regression and State Estimation
,”
IEEE Autotestcon
, Baltimore, MD, Sept. 17–20, pp.
646
653
.10.1109/AUTEST.2007.4374280
23.
Le Houx
,
J.
, and
Kramer
,
D.
,
2020
, “
Physics Based Modelling of Porous Lithium Ion Battery Electrodes A Review
,”
Energy Rep.
,
6
, pp.
1
9
.10.1016/j.egyr.2020.02.021
24.
Mohtat
,
P.
,
Lee
,
S.
,
Siegel
,
J. B.
, and
Stefanopoulou
,
A. G.
,
2019
, “
Towards Better Estimability of Electrode-Specific State of Health: Decoding the Cell Expansion
,”
J. Power Sources
,
427
, pp.
101
111
.10.1016/j.jpowsour.2019.03.104
25.
Prasad
,
G. K.
, and
Rahn
,
C. D.
,
2013
, “
Model Based Identification of Aging Parameters in Lithium Ion Batteries
,”
J. Power Sources
,
232
, pp.
79
85
.10.1016/j.jpowsour.2013.01.041
26.
Ahmed
,
R.
,
El Sayed
,
M.
,
Arasaratnam
,
I.
,
Tjong
,
J.
, and
Habibi
,
S.
,
2014
, “
Reduced-Order Electrochemical Model Parameters Identification and Soc Estimation for Healthy and Aged li-Ion Batteries Part I: Parameterization Model Development for Healthy Batteries
,”
IEEE J. Emer. Sel. Top. Power Electron.
,
2
(
3
), pp.
659
677
.10.1109/JESTPE.2014.2331059
27.
Zhang
,
L.
,
Wang
,
L.
,
Hinds
,
G.
,
Lyu
,
C.
,
Zheng
,
J.
, and
Li
,
J.
,
2014
, “
Multi-Objective Optimization of Lithium-Ion Battery Model Using Genetic Algorithm Approach
,”
J. Power Sources
,
270
, pp.
367
378
.10.1016/j.jpowsour.2014.07.110
28.
Forman
,
J. C.
,
Moura
,
S. J.
,
Stein
,
J. L.
, and
Fathy
,
H. K.
,
2012
, “
Genetic Identification and Fisher Identifiability Analysis of the Doyle–Fuller–Newman Model From Experimental Cycling of a LiFePO4 Cell
,”
J. Power Sources
,
210
, pp.
263
275
.10.1016/j.jpowsour.2012.03.009
29.
Lim
,
K.
,
Bastawrous
,
H. A.
,
Duong
,
V.-H.
,
See
,
K. W.
,
Zhang
,
P.
, and
Dou
,
S. X.
,
2016
, “
Fading Kalman Filter-Based Real-Time State of Charge Estimation in LiFePO4 Battery-Powered Electric Vehicles
,”
Appl. Energy
,
169
, pp.
40
48
.10.1016/j.apenergy.2016.01.096
30.
Wei
,
Z.
,
Zhao
,
J.
,
Zou
,
C.
,
Lim
,
T. M.
, and
Tseng
,
K. J.
,
2018
, “
Comparative Study of Methods for Integrated Model Identification and State of Charge Estimation of Lithium-Ion Battery
,”
J. Power Sources
,
402
, pp.
189
197
.10.1016/j.jpowsour.2018.09.034
31.
Wei
,
Z.
,
Zou
,
C.
,
Leng
,
F.
,
Soong
,
B. H.
, and
Tseng
,
K.-J.
,
2018
, “
Online Model Identification and State-of-Charge Estimate for Lithium-Ion Battery With a Recursive Total Least Squares-Based Observer
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1336
1346
.10.1109/TIE.2017.2736480
32.
Li
,
J.
,
Zou
,
L.
,
Tian
,
F.
,
Dong
,
X.
,
Zou
,
Z.
, and
Yang
,
H.
,
2016
, “
Parameter Identification of Lithium-Ion Batteries Model to Predict Discharge Behaviors Using Heuristic Algorithm
,”
J. Electrochem. Soc.
,
163
(
8
), pp.
A1646
A1652
.10.1149/2.0861608jes
33.
Ahmed
,
R.
,
Rahimifard
,
S.
, and
Habibi
,
S.
,
2019
, “
Offline Parameter Identification and SOC Estimation for New and Aged Electric Vehicles Batteries
,” IEEE Transportation Electrification Conference and Expo (
ITEC
), Detroit, MI, June 19–21, pp.
1
6
.10.1109/ITEC.2019.8790474
34.
Tian
,
Y.
,
Li
,
D.
,
Tian
,
J.
, and
Xia
,
B.
,
2017
, “
State of Charge Estimation of Lithium-Ion Batteries Using an Optimal Adaptive Gain Nonlinear Observer
,”
Electrochim. Acta
,
225
, pp.
225
234
.10.1016/j.electacta.2016.12.119
35.
Mesbahi
,
T.
,
Khenfri
,
F.
,
Rizoug
,
N.
,
Chaaban
,
K.
,
Bartholomeüs
,
P.
, and
Le Moigne
,
P.
,
2016
, “
Dynamical Modeling of Li-Ion Batteries for Electric Vehicle Applications Based on Hybrid Particle Swarm–Nelder–Mead (PSO–NM) Optimization Algorithm
,”
Elect. Power Syst. Res.
,
131
, pp.
195
204
.10.1016/j.epsr.2015.10.018
36.
Chau
,
K.
,
Wu
,
K.
, and
Chan
,
C.
,
2004
, “
A New Battery Capacity Indicator for Lithium-Ion Battery Powered Electric Vehicles Using Adaptive Neuro-Fuzzy Inference System
,”
Energy Convers. Manage.
,
45
(
11–12
), pp.
1681
1692
.10.1016/j.enconman.2003.09.031
37.
Junping
,
W.
,
Quanshi
,
C.
, and
Binggang
,
C.
,
2006
, “
Support Vector Machine Based Battery Model for Electric Vehicles
,”
Energy Convers. Manag.
,
47
(
7–8
), pp.
858
864
.10.1016/j.enconman.2005.06.013
38.
Xiong
,
R.
,
Sun
,
F.
,
Chen
,
Z.
, and
He
,
H.
,
2014
, “
A Data-Driven Multi-Scale Extended Kalman Filtering Based Parameter and State Estimation Approach of Lithium-Ion Polymer Battery in Electric Vehicles
,”
Appl. Energy
,
113
, pp.
463
476
.10.1016/j.apenergy.2013.07.061
39.
Xiong
,
R.
,
Sun
,
F.
,
He
,
H.
, and
Nguyen
,
T. D.
,
2013
, “
A Data-Driven Adaptive State of Charge and Power Capability Joint Estimator of Lithium-Ion Polymer Battery Used in Electric Vehicles
,”
Energy
,
63
, pp.
295
308
.10.1016/j.energy.2013.10.027
40.
Hu
,
C.
,
Jain
,
G.
,
Zhang
,
P.
,
Schmidt
,
C.
,
Gomadam
,
P.
, and
Gorka
,
T.
,
2014
, “
Data-Driven Method Based on Particle Swarm Optimization and k-Nearest Neighbor Regression for Estimating Capacity of Lithium-Ion Battery
,”
Appl. Energy
,
129
, pp.
49
55
.10.1016/j.apenergy.2014.04.077
41.
Malik
,
O.
,
Hope
,
G.
, and
Cheng
,
S.
,
1991
, “
Some Issues on the Practical Use of Recursive Least Squares Identification in Self-Tuning Control
,”
Int. J. Control
,
53
(
5
), pp.
1021
1033
.10.1080/00207179108953663
42.
Hassan
,
R.
,
Cohanim
,
B.
,
De Weck
,
O.
, and
Venter
,
G.
,
2005
, “
A Comparison of Particle Swarm Optimization and the Genetic Algorithm
,”
AIAA
Paper No. 2005-1897.10.2514/6.2005-1897
43.
Zamani
,
H.
,
Nadimi-Shahraki
,
M. H.
, and
Gandomi
,
A. H.
,
2019
, “
CCSA: Conscious Neighborhood-Based Crow Search Algorithm for Solving Global Optimization Problems
,”
Appl. Soft Comput.
,
85
, p.
105583
.10.1016/j.asoc.2019.105583
44.
Jones
,
K. O.
,
2005
, “
Comparison of Genetic Algorithm and Particle Swarm Optimization
,”
Proceedings of the International Conference on Computer Systems and Technologies
, Varna, Bulgaria, June 16–17, pp.
1
6
.
45.
Dey
,
S.
,
Shi
,
Y.
,
Smith
,
K.
,
Colclasure
,
A. M.
, and
Li
,
X.
,
2020
, “
From Battery Cell to Electrodes: Real-Time Estimation of Charge and Health of Individual Battery Electrodes
,”
IEEE Trans. Ind. Electron.
,
67
(
3
), pp.
2167
2175
.10.1109/TIE.2019.2907514
46.
Sattarzadeh
,
S.
,
Dey
,
S.
,
Colclasure
,
A.
, and
Smith
,
K.
,
2020
, “
Addressing the Observability Problem in Batteries: Algorithm Design for Electrode-Level Charge and Health Estimation
,” American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
1131
1136
.10.23919/ACC45564.2020.9147307
47.
Colclasure
,
A. M.
,
Smith
,
K. A.
, and
Kee
,
R. J.
,
2011
, “
Modeling Detailed Chemistry and Transport for Solid-Electrolyte-Interface (SEI) Films in Li–Ion Batteries
,”
Electrochim. Acta
,
58
, pp.
33
43
.10.1016/j.electacta.2011.08.067
48.
Single
,
F.
,
Latz
,
A.
, and
Horstmann
,
B.
,
2018
, “
Identifying the Mechanism of Continued Growth of the Solid-Electrolyte Interphase
,”
ChemSusChem
, 11(12), pp.
1950
1955
.10.1002/cssc.201800077
49.
Attia
,
P. M.
,
Chueh
,
W. C.
, and
Harris
,
S. J.
,
2020
, “
Revisiting the t 0.5 Dependence of SEI Growth
,”
J. Electrochem. Soc.
,
167
(
9
), p.
090535
.10.1149/1945-7111/ab8ce4
50.
Tanim
,
T. R.
,
Dufek
,
E. J.
,
Evans
,
M.
,
Dickerson
,
C.
,
Jansen
,
A. N.
,
Polzin
,
B. J.
,
Dunlop
,
A. R.
, et al.,
2019
, “
Extreme Fast Charge Challenges for Lithium-Ion Battery: Variability and Positive Electrode Issues
,”
J. Electrochem. Soc.
,
166
(
10
), pp.
A1926
A1938
.10.1149/2.0731910jes
51.
Colclasure
,
A. M.
,
Li
,
X.
,
Cao
,
L.
,
Finegan
,
D. P.
,
Yang
,
C.
, and
Smith
,
K.
,
2021
, “
Significant Life Extension of Lithium-Ion Batteries Using Compact Metallic Lithium Reservoir With Passive Control
,”
Electrochim. Acta
,
370
, p.
137777
.10.1016/j.electacta.2021.137777
52.
Zames
,
G.
,
Ajlouni
,
N.
,
Ajlouni
,
N.
,
Ajlouni
,
N.
,
Holland
,
J.
,
Hills
,
W.
, and
Goldberg
,
D.
,
1981
, “
Genetic Algorithms in Search, Optimization and Machine Learning
,”
Inf. Technol. J.
,
3
(
1
), pp.
301
302
.
53.
Lai
,
Q.
,
Jangra
,
S.
,
Ahn
,
H. J.
,
Kim
,
G.
,
Joe
,
W. T.
, and
Lin
,
X.
,
2020
, “
Analytical Derivation and Analysis of Parameter Sensitivity for Battery Electrochemical Dynamics
,”
J. Power Sources
,
472
, p.
228338
.10.1016/j.jpowsour.2020.228338
54.
Jacquez
,
J. A.
, and
Perry
,
T.
,
1990
, “
Parameter Estimation: Local Identifiability of Parameters
,”
Am. J. Physiol. Endocrinol. Metabol.
,
258
(
4
), pp.
E727
E736
.10.1152/ajpendo.1990.258.4.E727
55.
Lopetegi
,
I.
,
Plett
,
G. L.
,
Trimboli
,
M. S.
,
Oca
,
L.
,
Miguel
,
E.
, and
Iraola
,
U.
,
2024
, “
A New Battery SOC/SOH/eSOH Estimation Method Using a PBM and Interconnected SPKFs: Part II. SOH and eSOH Estimation
,”
J. Electrochem. Soc.
,
171
(
3
), p.
030518
.10.1149/1945-7111/ad30d5
56.
Mohtat
,
P.
,
Nezampasandarbabi
,
F.
,
Mohan
,
S.
,
Siegel
,
J. B.
, and
Stefanopoulou
,
A. G.
,
2017
, “
On Identifying the Aging Mechanisms in li-Ion Batteries Using Two Points Measurements
,” American Control Conference (
ACC
), Seattle, WA, May 24–26, pp.
98
103
.10.23919/ACC.2017.7962937
57.
Lee
,
S.
,
Mohtat
,
P.
,
Siegel
,
J. B.
,
Stefanopoulou
,
A. G.
,
Lee
,
J.-W.
, and
Lee
,
T.-K.
,
2020
, “
Estimation Error Bound of Battery Electrode Parameters With Limited Data Window
,”
IEEE Trans. Ind. Inf.
,
16
(
5
), pp.
3376
3386
.10.1109/TII.2019.2952066
58.
Pannala
,
S.
,
Movahedi
,
H.
,
Garrick
,
T. R.
,
Stefanopoulou
,
A. G.
, and
Siegel
,
J. B.
,
2024
, “
Consistently Tuned Battery Lifetime Predictive Model of Capacity Loss, Resistance Increase, and Irreversible Thickness Growth
,”
J. Electrochem. Soc.
,
171
(
1
), p.
010532
.10.1149/1945-7111/ad1294
59.
Nozarijouybari
,
Z.
, and
Fathy
,
H. K.
,
2022
, “
On the Feasibility of Developing Virtual Reference Electrodes for Lithium-Ion Batteries
,” American Control Conference (
ACC
), Atlanta, GA, June 8–10, pp.
5247
5252
.10.23919/ACC53348.2022.9867219
60.
Dubarry
,
M.
,
Truchot
,
C.
, and
Liaw
,
B. Y.
,
2012
, “
Synthesize Battery Degradation Modes Via a Diagnostic and Prognostic Model
,”
J. Power Sources
,
219
, pp.
204
216
.10.1016/j.jpowsour.2012.07.016
You do not currently have access to this content.