Abstract
The anode and cathode pieces are vital components of lithium-ion batteries. The coating surface density of active material is a significant parameter involved during the fabrication of electrodes and has considerable impact on battery performance. In this paper, anode and cathode pieces are prepared with different surface densities within the allowable range. The anode and cathode pieces are first graded respectively and then matched up according to different surface density ranges. Afterward, the electrodes are assembled with commercial polypropylene separator in 18,650 cell case and infused with electrolyte. The cathode is constituted with a mixture of nickel cobalt manganese (NCM) ternary material and lithium manganese oxide coated on aluminum foil, while the anode is composed of graphite coated on copper foil. The electrochemical performance and safety properties were tested to investigate the influence of the coating surface density of electrodes and optimize the electrochemical performance by regulating the matching surface density of electrodes. The results indicate that larger surface density of both cathode and anode can provide better battery consistency, while smaller surface density can contribute to better specific capacity and smaller capacity loss after cycling. Modest cost and superior properties can be achieved for lithium-ion batteries by reasonably matching the surface density of anodes and cathodes pieces.