Abstract

In recent years, supercapacitors have been extensively exploited as an alternative energy storage technology in various fields such as electronics, computer, and mechanical. In this context, we have reported the utilization of the Ni–Co LDH/rGO nanostructure, deposited on the 3D conductive nickel substrate, to fabricate electrode for supercapacitor application. The film formed on the nickel substrate demonstrated superior electric conductivity and higher surface area which resulted in rapid electron transfer and more active mass deposition. Vertical nanorods grown on the rGO sheet was found to maximize electrode performance with a maximum specific capacitance of 2987 Fg−1at a current density of 1 Ag−1. The asymmetric supercapacitor was fabricated with Ni–Co LDH/rGO as a positive electrode and rGO as a negative electrode, which has rendered an energy density of 39.9 Wh/kg with a power density of 1.48 kW/kg1. Based on the obtained results, the fabricated supercapacitor is envisioned to be exploited in various potential applications.

References

1.
Lokhande
,
P. E.
, and
Chavan
,
U. S.
,
2019
, “
Surfactant-Assisted Cabbage Rose-Like CuO Deposition on Cu Foam by for Supercapacitor Applications
,”
Inorg. Nano-Metal Chem.
,
48
(
9
), pp.
434
440
.
2.
Lokhande
,
P. E.
, and
Chavan
,
U. S.
,
2019
, “
Nanostructured Ni(OH)2/rGO Composite Chemically Deposited on Ni Foam for High Performance of Supercapacitor Applications
,”
Mater. Sci. Energy Technol.
,
2
, pp.
52
56
. 10.1016/j.mset.2018.10.003
3.
Iro
,
Z. S.
,
Subramani
,
C.
, and
Dash
,
S. S.
,
2016
, “
A Brief Review on Electrode Materials for Supercapacitor
,”
Int. J. Electrochem. Sci.
,
11
, pp.
10628
10643
. 10.20964/2016.12.50
4.
Lokhande
,
P. E.
,
Pawar
,
K.
, and
Chavan
,
U. S.
,
2018
, “
Chemically Deposited Ultrathin α-Ni(OH)2 Nanosheet Using Surfactant on Ni Foam for High Performance Supercapacitor Application
,”
Mater. Sci. Energy Technol.
,
1
, pp.
166
170
. 10.1016/j.mset.2018.07.001
5.
Lokhande
,
V. C.
,
Lokhande
,
A. C.
,
Lokhande
,
C. D.
,
Kim
,
J. H.
, and
Ji
,
T.
,
2016
, “
Supercapacitive Composite Metal Oxide Electrodes Formed With Carbon, Metal Oxides and Conducting Polymers
,”
J. Alloys Compd.
,
682
, pp.
381
403
. 10.1016/j.jallcom.2016.04.242
6.
Lokhande
,
P. E.
, and
Panda
,
H. S.
,
2015
, “
Synthesis and Characterization of Ni.Co(OH)2 Material for Supercapacitor Application
,”
IARJSET
,
2
(
8
), pp.
10
13
. 10.17148/IARJSET.2015.2903
7.
Liu
,
Y. F.
,
Yuan
,
G. H.
,
Jiang
,
Z. H.
,
Yao
,
Z. P.
, and
Yue
,
M.
,
2015
, “
Preparation of Ni(OH)2-Graphene Sheet-Carbon Nanotube Composite as Electrode Material for Supercapacitors
,”
J. Alloys Compd.
,
618
, pp.
37
43
. 10.1016/j.jallcom.2014.08.167
8.
Xiong
,
X.
,
Ding
,
D.
,
Chen
,
D.
,
Waller
,
G.
,
Bu
,
Y.
,
Wang
,
Z.
, and
Liu
,
M.
,
2015
, “
Three-dimensional Ultrathin Ni(OH)2 Nanosheets Grown on Nickel Foam for High-Performance Supercapacitors
,”
Nano Energy.
,
11
, pp.
154
161
. 10.1016/j.nanoen.2014.10.029
9.
González
,
A.
,
Goikolea
,
E.
,
Barrena
,
J. A.
, and
Mysyk
,
R.
,
2016
, “
Review on Supercapacitors: Technologies and Materials
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1189
1206
. 10.1016/j.rser.2015.12.249
10.
Bai
,
J.
,
Yan
,
H.
,
Liu
,
Q.
,
Liu
,
J.
,
Li
,
Z.
,
Bai
,
X.
,
Li
,
R.
, and
Wang
,
J.
,
2018
, “
Synthesis of Layered α-Ni(OH)2/RGO Composites by Exfoliation of α-Ni(OH)2 for High-Performance Asymmetric Supercapacitors
,”
Mater. Chem. Phys.
,
204
, pp.
18
26
. 10.1016/j.matchemphys.2017.10.028
11.
Zhang
,
Y.
,
Sun
,
L.
,
Lv
,
K.
, and
Zhang
,
Y.
,
2018
, “
One-pot Synthesis of Ni(OH)2 flakes Embeded in Highly-Conductive Carbon Nanotube/Graphene Hybrid Framework as High Performance Electrodes for Supercapacitors
,”
Mater. Lett.
,
213
, pp.
131
134
. 10.1016/j.matlet.2017.10.129
12.
Lei
,
X.
,
Shi
,
Z.
,
Wang
,
X.
,
Wang
,
T.
,
Ai
,
J.
,
Shi
,
P.
,
Xue
,
R.
,
Guo
,
H.
, and
Yang
,
W.
,
2018
, “
Solvothermal Synthesis of Pompon-Like Nickel-Cobalt Hydroxide/Graphene Oxide Composite for High-Performance Supercapacitor Application
,”
Colloids Surfaces A Physicochem. Eng. Asp.
,
549
, pp.
76
85
. 10.1016/j.colsurfa.2018.04.011
13.
Chen
,
T.
,
Tang
,
Y.
,
Qiao
,
Y.
,
Liu
,
Z.
,
Guo
,
W.
,
Song
,
J.
,
Mu
,
S.
,
Yu
,
S.
,
Zhao
,
Y.
, and
Gao
,
F.
,
2016
, “
All-Solid-State High Performance Asymmetric Supercapacitors Based on Novel MnS Nanocrystal and Activated Carbon Materials
,”
Sci. Rep.
,
6
(
1
), pp.
1
9
. 10.1038/s41598-016-0001-8
14.
Liao
,
Q.
,
Li
,
N.
,
Jin
,
S.
,
Yang
,
G.
, and
Wang
,
C.
,
2015
, “
All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene
,”
ACS Nano.
,
9
(
5
), pp.
5310
5317
. 10.1021/acsnano.5b00821
15.
Xing
,
H.
,
Lan
,
Y.
,
Zong
,
Y.
,
Sun
,
Y.
,
Zhu
,
X.
,
Li
,
X.
, and
Zheng
,
X.
,
2019
, “
Ultrathin NiCo-Layered Double Hydroxide Nanosheets Arrays Vertically Grown on Ni Foam as Binder-Free High-Performance Supercapacitors
,”
Inorg. Chem. Commun.
,
101
, pp.
125
129
. 10.1016/j.inoche.2019.01.031
16.
Yang
,
S. S.
,
Lin
,
L. Y.
,
Li
,
X.
,
Ma
,
C. W.
,
Lai
,
H. X.
, and
Lin
,
L. Y.
,
2017
, “
Methodology for Synthesizing the Nickel Cobalt Hydroxide/Oxide and Reduced Graphene Oxide Complex for Energy Storage Electrodes
,”
J. Energy Storage.
,
14
, pp.
112
124
. 10.1016/j.est.2017.09.015
17.
Du
,
Q.
,
Su
,
L.
,
Hou
,
L.
,
Sun
,
G.
,
Feng
,
M.
,
Yin
,
X.
,
Ma
,
Z.
,
Shao
,
G.
, and
Gao
,
W.
,
2018
, “
Rationally Designed Ultrathin Ni-Al Layered Double Hydroxide and Graphene Heterostructure for High-Performance Asymmetric Supercapacitor
,”
J. Alloys Compd.
,
740
, pp.
1051
1059
. 10.1016/j.jallcom.2018.01.069
18.
Ma
,
H.
,
He
,
J.
,
Xiong
,
D. B.
,
Wu
,
J.
,
Li
,
Q.
,
Dravid
,
V.
, and
Zhao
,
Y.
,
2016
, “
Nickel Cobalt Hydroxide @Reduced Graphene Oxide Hybrid Nanolayers for High Performance Asymmetric Supercapacitors with Remarkable Cycling Stability
,”
ACS Appl. Mater. Interfaces.
,
8
(
3
), pp.
1992
2000
. 10.1021/acsami.5b10280
19.
Lokhande
,
P. E.
, and
Chavan
,
U. S.
,
2018
, “
Nanoflower-like Ni(OH)2 Synthesis with Chemical Bath Deposition Method for High Performance Electrochemical Applications
,”
Mater. Lett.
,
218
, pp.
225
228
. 10.1016/j.matlet.2018.02.012
20.
Zang
,
X.
,
Sun
,
C.
,
Dai
,
Z.
,
Yang
,
J.
, and
Dong
,
X.
,
2017
, “
Nickel Hydroxide Nanosheets Supported on Reduced Graphene Oxide for High-Performance Supercapacitors
,”
J. Alloys Compd.
,
691
, pp.
144
150
. 10.1016/j.jallcom.2016.08.233
21.
Wang
,
W.
,
Zhang
,
N.
,
Ye
,
Z.
,
Hong
,
Z.
, and
Zhi
,
M.
,
2019
, “
Synthesis of 3D Hierarchical Porous Ni–Co Layered Double Hydroxide/N-Doped Reduced Graphene Oxide Composites for Supercapacitor Electrodes
,”
Inorg. Chem. Front.
,
6
(
2
), pp.
407
416
. 10.1039/C8QI01132J
22.
Lokhande
,
P. E.
, and
Chavan
,
U. S.
,
2018
, “
Conventional Chemical Precipitation Route to Anchoring Ni(OH)2for Improving Flame Retardancy of PVA
,”
Mater. Today Proc.
,
5
(
8
), pp.
16352
16357
. 10.1016/j.matpr.2018.05.131
23.
Hall
,
D. S.
,
Lockwood
,
D. J.
,
Bock
,
C.
, and
MacDougall
,
B. R.
,
2015
, “
Nickel Hydroxides and Related Materials: a Review of Their Structures, Synthesis and Properties
,”
Proc. Math. Phys. Eng. Sci.
,
471
(
2174
), p.
20140792
. 10.1098/rspa.2014.0792
24.
Wang
,
D.
,
Wei
,
A.
,
Tian
,
L.
,
Mensah
,
A.
,
Li
,
D.
,
Xu
,
Y.
, and
Wei
,
Q.
,
2019
, “
Applied Surface Science Nickel-Cobalt Layered Double Hydroxide Nanosheets With Reduced Graphene Oxide Grown on Carbon Cloth for Symmetric Supercapacitor
,”
Appl. Surf. Sci.
,
483
, pp.
593
600
. 10.1016/j.apsusc.2019.03.345
25.
Chaitra
,
K.
,
Nagaraju
,
N.
, and
Nagaraju
,
K.
,
2015
, “
Nanocomposite of Hexagonal β-Ni(OH)2/Multiwalled Carbon Nanotubes as High Performance Electrode for Hybrid Supercapacitors
,”
Mater. Chem. Phys.
,
164
, pp.
98
107
. 10.1016/j.matchemphys.2015.08.030
26.
Li
,
Y.
,
Ye
,
H.
,
Chen
,
J.
,
Wang
,
N.
,
Sun
,
R.
, and
Wong
,
C. P.
,
2018
, “
Flexible β-Ni(OH)2/Graphene Electrode With High Areal Capacitance Enhanced by Conductive Interconnection
,”
J. Alloys Compd.
,
737
, pp.
731
739
. 10.1016/j.jallcom.2017.12.192
27.
Wang
,
H.
,
Song
,
Y.
,
Liu
,
W.
, and
Yan
,
L.
,
2018
, “
Three Dimensional Ni(OH)2/rGO Hydrogel as Binder-Free Electrode for Asymmetric Supercapacitor
,”
J. Alloys Compd.
,
735
, pp.
2428
2435
. 10.1016/j.jallcom.2017.11.358
28.
Chai
,
H.
,
Peng
,
X.
,
Liu
,
T.
,
Su
,
X.
,
Jia
,
D.
, and
Zhou
,
W.
,
2017
, “
High-Performance Supercapacitors Based on Conductive Graphene Combined with Ni(OH)2 Nanoflakes
,”
RSC Adv.
,
7
(
58
), pp.
36617
36622
. 10.1039/C7RA04986B
You do not currently have access to this content.