Abstract

Understanding the mechanical, thermal, and electrical properties of prismatic lithium-ion batteries (LIBs) is vital to battery safety design, which is key to electric vehicle safety. This study investigated prismatic LIBs subjected to multiple-position indentation loading. The side face of an intact prismatic LIB cell is divided into 15 compressed sections. Experimental results indicate that indentation loading of all sections could initiate thermal runaway. Among the sections studied, that near the positive terminal shows the highest risk of thermal runaway, whereas that near the top-right corner is relatively safe. Failure mode analysis reveals that short circuits may result from contact between the positive and negative current collectors.

References

1.
Jia
,
Y.
,
Yin
,
S.
,
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2019
, “
Unlocking the Coupling Mechanical-Electrochemical Behavior of Lithium-Ion Battery upon Dynamic Mechanical Loading
,”
Energy
,
166
(
1
), pp.
951
960
. 10.1016/j.energy.2018.10.142
2.
Song
,
Z.
,
Li
,
J.
,
Hou
,
J.
,
Hofmann
,
H.
,
Ouyang
,
M.
, and
Du
,
J.
,
2018
, “
The Battery-Supercapacitor Hybrid Energy Storage System in Electric Vehicle Applications: A Case Study
,”
Energy
,
154
(
1
), pp.
433
441
. 10.1016/j.energy.2018.04.148
3.
Poullikkas
,
A.
,
2015
, “
Sustainable Options for Electric Vehicle Technologies
,”
Renewable Sustainable Energy Rev.
,
41
(
1
), pp.
1277
1287
. 10.1016/j.rser.2014.09.016
4.
Ping
,
P.
,
Chen
,
C.
,
Sun
,
J.
,
Huang
,
P.
, and
Wang
,
Q.
,
2014
, “
Thermal Behaviour Analysis of Lithium-Ion Battery at Elevated Temperature Using Deconvolution Method
,”
Appl. Energy
,
129
(
15
), pp.
261
273
. 10.1016/j.apenergy.2014.04.092
5.
Liu
,
J.
,
Duan
,
Q.
,
Ma
,
M.
,
Zhao
,
C.
,
Sun
,
J.
, and
Wang
,
Q.
,
2020
, “
Aging Mechanisms and Thermal Stability of Aged Commercial 18650 Lithium Ion Battery Induced by Slight Overcharging Cycling
,”
J. Power Sources
,
445
(
1
), p.
227263
. 10.1016/j.jpowsour.2019.227263
6.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
(
15
), pp.
377
385
. 10.1016/j.jpowsour.2012.04.055
7.
Sahraei
,
E.
,
Meier
,
J.
, and
Wierzbicki
,
T.
,
2014
, “
Characterizing and Modeling Mechanical Properties and Onset of Short Circuit for Three Types of Lithium-Ion Pouch Cells
,”
J. Power Sources
,
247
(
1
), pp.
503
516
. 10.1016/j.jpowsour.2013.08.056
8.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
(
1
), pp.
307
321
. 10.1016/j.jpowsour.2011.10.094
9.
Xu
,
J.
,
Wu
,
Y.
, and
Yin
,
S.
,
2017
, “
Investigation of Effects of Design Parameters on the Internal Short-Circuit in Cylindrical Lithium-Ion Batteries
,”
RSC Adv.
,
7
(
24
), pp.
14360
14371
. 10.1039/C6RA27892B
10.
Xu
,
J.
,
Jia
,
Y.
,
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Yin
,
S.
,
2018
, “
Coupling Effect of State-of-Health and State-of-Charge on the Mechanical Integrity of Lithium-Ion Batteries
,”
Exp. Mech.
,
58
(
4
), pp.
633
643
. 10.1007/s11340-018-0380-9
11.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell upon Crushing
,”
Eng. Failure Anal.
,
53
(
1
), pp.
97
110
. 10.1016/j.engfailanal.2015.03.025
12.
Xia
,
Y.
,
Wierzbicki
,
T.
,
Sahraei
,
E.
, and
Zhang
,
X.
,
2014
, “
Damage of Cells and Battery Packs Due to Ground Impact
,”
J. Power Sources
,
267
(
1
), pp.
78
97
. 10.1016/j.jpowsour.2014.05.078
13.
Liu
,
B.
,
Jia
,
Y.
,
Li
,
J.
,
Yin
,
S.
,
Yuan
,
C.
,
Hu
,
Z.
,
Wang
,
L.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Safety Issues Caused by Internal Short Circuits in Lithium-Ion Batteries
,”
J. Mater. Chem. A
,
6
(
43
), pp.
21475
21484
. 10.1039/C8TA08997C
14.
Yuan
,
C.
,
Gao
,
X.
,
Wong
,
H. K.
,
Feng
,
B.
, and
Xu
,
J.
,
2019
, “
A Multiphysics Computational Framework for Cylindrical Battery Behavior Upon Mechanical Loading Based on LS-DYNA
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1160
A1169
. 10.1149/2.1071906jes
15.
Liu
,
B.
,
Zhao
,
H.
,
Yu
,
H.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
(
1
), pp.
172
184
. 10.1016/j.electacta.2017.10.045
16.
Zhang
,
C.
,
Sprague
,
M. A.
,
Pesaran
,
A. A.
, and
Santhanagopalan
,
S.
,
2015
, “
A Representative-Sandwich Model for Simultaneously Coupled Mechanical-Electrical-Thermal Simulation of a Lithium-Ion Cell Under Quasi-Static Indentation Tests
,”
J. Power Sources
,
298
(
1
), pp.
309
321
. 10.1016/j.jpowsour.2015.08.049
17.
Zhang
,
C.
,
Sprague
,
M. A.
,
Pesaran
,
A. A.
, and
Santhanagopalan
,
S.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
(
20
), pp.
102
113
. 10.1016/j.jpowsour.2015.04.162
18.
Zhang
,
C.
,
Xu
,
J.
,
Cao
,
L.
,
Wu
,
Z.
, and
Santhanagopalan
,
S.
,
2017
, “
Constitutive Behavior and Progressive Mechanical Failure of Electrodes in Lithium-Ion Batteries
,”
J. Power Sources
,
357
(
31
), pp.
126
137
. 10.1016/j.jpowsour.2017.04.103
19.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C. Y.
,
2015
, “
Modeling Internal Shorting Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
7
), pp.
A1352
A1364
. 10.1149/2.1031507jes
20.
Zhu
,
J.
,
Zhang
,
X.
,
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2016
, “
Deformation and Failure Mechanisms of 18650 Battery Cells Under Axial Compression
,”
J. Power Sources
,
336
(
1
), pp.
332
340
. 10.1016/j.jpowsour.2016.10.064
21.
Chung
,
S. H.
,
Tancogne-Dejean
,
T.
,
Zhu
,
J.
,
Luo
,
H.
, and
Wierzbicki
,
T.
,
2018
, “
Failure in Lithium-Ion Batteries Under Transverse Indentation Loading
,”
J. Power Sources
,
389
(
15
), pp.
148
159
. 10.1016/j.jpowsour.2018.04.003
22.
Li
,
W.
,
Xia
,
Y.
,
Gorji
,
M. B.
,
Wierzbicki
,
T.
, and
Zhu
,
J.
,
2019
, “
Data-Driven Safety Envelope of Lithium-Ion Batteries for Electric Vehicles
,”
Joule
,
3
(
11
), pp.
1
13
.
23.
Chen
,
X.
,
Yuan
,
Q.
,
Wang
,
T.
,
Ji
,
H.
,
Ji
,
Y.
,
Li
,
L.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on the Dynamic Behavior of Prismatic Lithium-Ion Battery Upon Repeated Impact
,”
Eng. Failure Anal.
,
115
(
1
), p.
104667
. 10.1016/j.engfailanal.2020.104667
24.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
, and
Yuan
,
Q.
,
2019
, “
Dynamic Mechanical Behavior of Prismatic Lithium on Battery Upon Impact
,”
Int. J. Energy Res.
,
43
(
6
), pp.
7421
7432
.
25.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
,
Yuan
,
Q.
, and
Li
,
L.
,
2020
, “
Dynamic Behavior and Modeling of Prismatic Lithium-Ion Battery
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2984
2997
. 10.1002/er.5126
26.
Wang
,
H.
,
Simunovic
,
S.
,
Maleki
,
H.
,
Howard
,
J. N.
, and
Hallmark
,
J. A.
,
2016
, “
Internal Configuration of Prismatic Lithium-Ion Cells at the Onset of Mechanically Induced Short Circuit
,”
J. Power Sources
,
306
(
29
), pp.
424
430
. 10.1016/j.jpowsour.2015.12.026
27.
Lian
,
J.
,
Wierzbicki
,
T.
,
Zhu
,
J.
, and
Li
,
W.
,
2019
, “
Prediction of Shear Crack Formation of Lithium-Ion Batteries Under Rod Indentation: Comparison of Seven Failure Criteria
,”
Eng. Fract. Mech.
,
217
(
1
), p.
106520
. 10.1016/j.engfracmech.2019.106520
28.
Lyu
,
P.
,
Liu
,
X.
,
Qu
,
J.
,
Zhao
,
J.
,
Huo
,
Y.
,
Qu
,
Z.
, and
Rao
,
Z.
,
2020
, “
Recent Advances of Thermal Safety of Lithium Ion Battery for Energy Storage
,”
Energy Storage Mater.
,
31
(
1
), pp.
195
220
. 10.1016/j.ensm.2020.06.042
You do not currently have access to this content.