Abstract

The world’s present reserves in terms of fossil fuels are exhausting speedily. Such rapid energy consumption can be caused of unsustainable worldwide progress. Therefore, the researcher’s challenge is to identify the most efficient and economical energy conversion method to provide a viable replacement for the ongoing conventional energy converters. In this context, fuel cell technology (solid oxide fuel cells (SOFCs)) can play a key role and convert hydrocarbon energy into electrical energy. The conventional electrolyte YSZ based SOFCs work at high temperature ∼1000 °C. In this present research, the new ceramics electrolytes materials boron doped ceria (BDC) have been developed by auto-combustion technique. The prepared materials have been characterized by X-ray diffraction (XRD) and TEM. The crystallite sizes of all prepared samples are in the range of 50–80 nm applying Scherer’s formula. The electrical studies and fuel cell performance have been completed at temperature ≤ 700 °C. The doping of boron into ceria has significantly improved the electrical conduction of pure ceria oxide which has been studied using four-probe setup. The maximum ionic conductivity and power density of B0.20:Ce0.80 (molar ratio) electrolyte material named as E4 have been achieved and found to be 0.09 S/cm at 700 °C and 198.125 mW/cm2 at 650 °C. It has been observed that all electrochemical results are consistent with the doping of boron into ceria.

References

1.
Hussain
,
F.
,
Ahmad
,
M. A.
,
Raza
,
R.
,
Khan
,
M. A.
,
Rehman
,
Z.
,
Riaz
,
R. A.
, and
Abbas
,
G.
,
2019
, “
Electrochemical Investigation of Multi-Fuel Based Low Temperature Nanocomposite Anode for Solid Oxide Fuel Cell
,”
J. Power Sources
,
425
, pp.
147
152
. 10.1016/j.jpowsour.2019.04.002
2.
Hussain
,
F.
,
Abbas
,
G.
,
Ahmad
,
M. A.
,
Raza
,
R.
,
Rehman
,
Z.
,
Mumtaz
,
S.
,
Akbar
,
M.
,
Riaz
,
R. A.
, and
Dilshad
,
S.
,
2019
, “
Comparative Electrochemical Investigation of Zinc Based Nano-Composite Anode Materials for Solid Oxide Fuel Cell
,”
Ceram. Int.
,
45
(
1
), pp.
1077
1083
. 10.1016/j.ceramint.2018.09.288
3.
Xia
,
C.
,
2018
, “
Development of Natural Mineral Composites for low-Temperature Solid Oxide Fuel Cells
,”
Ph.D. thesis
,
Department of Energy Technology, KTH
,
Stockholm
. Sweden Printed in Sweden Universitete service US-AB Stockholm, 2018 TRITA-ITM-AVL 2018:44.
4.
Abbas
,
G.
,
Raza
,
R.
,
Khan
,
M. A.
,
Ahmad
,
I.
,
Chaudhry
,
M. A.
,
Sherazi
,
T. A.
,
Mohsin
,
M.
,
Ahmad
,
M.
, and
Zhu
,
B.
,
2015
, “
Synthesize and Characterization of Nanocomposite Anodes for Low Temperature Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
40
(
1
), pp.
891
897
. 10.1016/j.ijhydene.2014.10.119
5.
Atkinson
,
A.
,
Barnnet
,
S.
,
Gorte
,
R. J.
,
Irvine
,
J. T. S.
,
Mcevoy
,
A. J.
, and
Mogensen
,
M.
,
2004
, “
Advanced Anodes for High-Temperature Fuel Cells
,”
Nat. Mater
,
3
(
1
), pp.
17
27
. 10.1038/nmat1040
6.
Wang
,
Y.
,
Chen
,
K. S.
,
Mishler
,
J.
,
Cho
,
S. C.
, and
Adroher
,
X. C.
,
2011
, “
A Review of Polymer Electrolyte Membrane Fuel Cells: Technology, Applications, and Needs on Fundamental Research
,”
Appl. Energy
,
88
(
4
), pp.
981
1007
. 10.1016/j.apenergy.2010.09.030
7.
Hussain
,
F.
,
Ahmad
,
M. A.
,
Badshah
,
S.
,
Raza
,
R.
,
Khan
,
M. A.
,
Mumtaz
,
S.
,
Dilshad
,
S.
,
Riaz
,
R. A.
,
Hussain
,
M. J.
, and
Abbas
,
G.
,
2019
, “
A Modelling Approach for Low-Temperature SOFC-Based micro-Combined Heat and Power Systems
,”
Int. J. Mod. Phy. B
,
33
(
4
), p.
1950001
. 10.1142/S0217979219500012
8.
Xia
,
X.
,
Li
,
Y.
,
Tian
,
Y.
,
Liu
,
Q.
,
Zhao
,
Y.
,
Jia
,
L.
, and
Li
,
Y.
,
2009
, “
A High Performance Composite Ionic Conducting Electrolyte for Intermediate Temperature Fuel Cell and Evidence for Ternary Ionic Conduction
,”
J. Power Sources
,
188
(
1
), pp.
156
162
. 10.1016/j.jpowsour.2008.11.068
9.
Fergus
,
J. W.
,
2006
, “
Electrolytes for Solid Oxide Fuel Cells
,”
J. Power Sources
,
162
(
1
), pp.
30
40
. 10.1016/j.jpowsour.2006.06.062
10.
Coles-Aldridge
,
A.
, and
Baker
,
R.
,
2020
, “
Oxygen ion Conductivity in Ceria-Based Electrolytes Co-Doped With Samarium and Gadolinium
,”
Solid State Ionics
,
347
, p.
115255
. 10.1016/j.ssi.2020.115255
11.
Minh
,
N. Q.
,
Mizusaki
,
J.
, and
Singhal
,
S. C.
,
2017
, “
Advances in Solid Oxide Fuel Cells: Review of Progress Through Three Decades of the International Symposia on Solid Oxide Fuel Cells
,”
ECS Trans.
,
73
(
1
), pp.
63
73
. 10.1149/07801.0063ecst
12.
Reisert
,
M.
,
Aphale
,
A.
, and
Singh
,
P.
,
2018
, “
Solid Oxide Electrochemical Systems: Material Degradation Processes and Novel Mitigation Approach
,”
Nanomaterials
,
11
(
11
), p.
2169
.
13.
Tsampas
,
M. N.
,
Sapountzi
,
F. M.
, and
Vernoux
,
P.
,
2015
, “
Applications of Yttria Stabilized Zirconia (YSZ) in Catalysis
,”
Catal. Sci. Technol.
,
5
(
11
), pp.
4884
4900
. 10.1039/C5CY00739A
14.
Saebea
,
D.
,
Authayanun
,
S.
,
Patcharavorachot
,
Y.
,
Chatrattanawet
,
N.
, and
Arpornwichanop
,
A.
,
2018
, “
Electrochemical Performance Assessment of Low Temperature Solid Oxide Fuel Cell With YSZ-Based and SDC-Based Electrolytes
,”
Int. J. Hydrogen Energy
,
43
(
2
), pp.
921
931
. 10.1016/j.ijhydene.2017.09.173
15.
Wei
,
C. C.
,
2009
, “
Yttria Stabilised Zirconia (YSZ) Membranes and Their Applications
,”
Ph.D. thesis
,
Department of Chemical Engineering and Chemical Technology, Imperial College of Science, Technology and Medicine
,
UK
.
16.
Arunkumar
,
P.
,
Meena
,
M.
, and
Babu
,
K. S.
,
2012
, “
A Review on Cerium Oxide-Based Electrolytes for ITSOFC
,”
Nanomater. Energy
,
1
(
5
), pp.
288
305
. 10.1680/nme.12.00015
17.
Zhu
,
B.
,
2006
, “
Next Generation Fuel Cell R&D
,”
Int. J. Energy Res.
,
30
(
11
), pp.
895
903
. 10.1002/er.1195
18.
Selman
,
J. R.
,
Maru
,
H. C.
,
Mamantov
,
G.
, and
Braunstein
,
J.
,
1981
,
Advances in Molten Salt Chemistry
, Vol.
4
,
Plenum Press
,
New York and London
, pp.
159
389
.
19.
Fu
,
Q. X.
,
Zha
,
S. W.
,
Zhang
,
W.
,
Peng
,
D. K.
,
Meng
,
G. Y.
, and
Zhu
,
B.
,
2002
, “
Intermediate Temperature Fuel Cells Based on Doped Ceria–LiCl–SrCl2 Composite Electrolyte
,”
J. Power Sources
,
104
(
1
), pp.
73
78
. 10.1016/S0378-7753(01)00874-6
20.
Huang
,
J. B.
,
Mao
,
Z. Q.
,
Yang
,
L. Z.
, and
Peng
,
R. R.
,
2005
, “
SDC-Carbonate Composite Electrolytes for Low-Temperature SOFSs
,”
Eelectrochem. Solid State Lett.
,
8
(
9
), pp.
A437
A440
. 10.1149/1.1960139
21.
Wang
,
X.
,
Ma
,
Y.
,
Raza
,
R.
,
Muhammed
,
M.
, and
Zhu
,
B.
,
2008
, “
Novel Core–Shell SDC/Amorphous Na2CO3 Nanocomposite Electrolyte for Low-Temperature SOFCs
,”
Electrochem. Commun.
,
10
(
10
), pp.
617
620
.
22.
Khan
,
M. A.
,
Xu
,
C.
,
Song
,
Z.
,
Raza
,
R.
,
Ahmad
,
M. A.
,
Abbas
,
G.
, and
Zhu
,
B.
,
2018
, “
Synthesize and Characterization of Ceria Based Nano-Composite Materials for Low Temperature Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
43
(
12
), pp.
6310
6317
. 10.1016/j.ijhydene.2018.01.166
23.
Ali
,
A.
,
Rafique
,
A.
,
Kaleemullah
,
M.
,
Abbas
,
G.
,
Khan
,
M. A.
,
Ahmad
,
M. A.
, and
Raza
,
R.
,
2018
, “
Effect of Alkali Carbonates (Single, Binary, and Ternary) on Doped Ceria: A Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells
,”
ACS Appl. Mater. Interfaces
,
10
(
1
), pp.
806
818
. 10.1021/acsami.7b17010
24.
Rehman
,
Z. U.
,
Abbas
,
G.
,
Ahmad
,
M. A.
,
Raza
,
R.
,
Khan
,
M. A.
,
Batool
,
R.
,
Altaf
,
F.
,
Gill
,
R.
, and
Hussain
,
F.
,
2019
, “
Ternary Alkali Carbonates Effect on Electrochemical Characterization of Nanocomposite Calcium Doped Ceria Electrolytes (LNK-CDC) for SOFC
,”
ASME J. Electrochem. Energy Convers. Storage
,
17
(
1
), p.
011001
. 10.1115/1.4043490
25.
Abbas
,
G.
,
Raza
,
R.
,
Chaudhry
,
M. A.
, and
Zhu
,
B.
,
2011
, “
Preparation and Characterization of Nanocomposite Calcium Doped Ceria Electrolyte with AalkaliCarbonates (NK-CDC) for SOFC
,”
J. Fuel Cell Sci. Technol.
,
8
(
4
), p.
041013
. 10.1115/1.4003635
26.
Fujisawa
,
K.
,
Hayashi
,
T.
,
Endo
,
M.
,
Terrones
,
M.
,
Kim
,
J. H.
, and
Kim
,
Y. A.
,
2018
, “
Effect of Boron Doping on the Electrical Conductivity of Metallicity-Separated Single Walled Carbon Nanotubes
,”
Nanoscale
,
10
(
26
), pp.
12723
12733
. 10.1039/C8NR02323A
27.
Raza
,
R.
,
Ahmed
,
M. A.
,
Akram
,
N.
,
Saleem
,
M.
,
Akhtar
,
M. N.
,
Sherazi
,
T. A.
,
Khan
,
M. A.
,
Abbas
,
G.
,
Shakir
,
I.
,
Mohsin
,
M.
,
Alvi
,
F.
,
Javed
,
M. S.
,
Rafique
,
M. Y.
, and
Zhu
,
B.
,
2015
, “
Composite Electrolyte With Proton Conductivity for Low-Temperature Solid Oxide Fuel Cell
,”
Appl. Phys. Lett.
,
107
(
18
), p.
183903
. 10.1063/1.4934940
28.
“Sigma Aldrich USA,”
https://www.sigmaaldrich.com/united-states.html, Accessed June 25, 2020.
You do not currently have access to this content.