Abstract

The thermal runaway behavior of lithium-ion cells plays a crucial role in the safety management of the powertrain in electric vehicles. In this study, the effect of states of charge (SOC) on the thermal runaway behavior of commercial LiNi1/3Mn1/3Co1/3O2 (NMC)-based pouch cells is investigated using accelerating rate calorimetry (ARC) and ex-situ X-ray diffraction. By studying the differences in the onset temperature of self-heating (T1) and the onset temperature of thermal runaway (T2) along with the mass loss between the different SOCs, we observed that higher SOC led to a decrease in the T2. However, T1 initially increased and then decreased with increasing SOC. These trends were attributed to the phase change of cathode material and separator. The ARC results also indicated the occurrence of endothermic reactions during the self-heating accumulation period. The findings in this study are helpful for thermal safety management of battery powertrain for electric vehicles.

References

1.
Fellner
,
J. P.
,
Loeber
,
G. J.
, and
Sandhu
,
S. S.
,
1999
, “
Testing of Lithium-ion 18650 Cells and Characterizing/Predicting Cell Performance
,”
J. Power Sources
,
81–82
, pp.
867
871
. 10.1016/S0378-7753(98)00238-9
2.
Kida
,
Y.
,
Kinoshita
,
A.
,
Yanagida
,
K.
,
Funahashi
,
A.
,
Nohma
,
T.
, and
Yonezu
,
I.
,
2002
, “
A Study on the Cycle Performance of Lithium Secondary Batteries Using Lithium Nickel-Cobalt Composite Oxide and Graphite/Coke Hybrid Carbon
,”
Electrochim. Acta
,
47
(
11
), pp.
1691
1696
. 10.1016/S0013-4686(02)00019-1
3.
Feng
,
X.
,
Ren
,
D.
,
He
,
X.
, and
Ouyang
,
M.
,
2020
, “
Mitigating Thermal Runaway of Lithium-Ion Batteries
,”
Joule
,
4
(
4
), pp.
743
770
. 10.1016/j.joule.2020.02.010
4.
Ren
,
D.
,
Liu
,
X.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2018
, “
Model-based Thermal Runaway Prediction of Lithium-ion Batteries From Kinetics Analysis of Cell Components
,”
Appl. Energy
,
228
, pp.
633
644
. 10.1016/j.apenergy.2018.06.126
5.
Tomaszewska
,
A.
,
Chu
,
Z.
,
Feng
,
X.
,
O’Kane
,
S.
,
Liu
,
X.
,
Chen
,
J.
,
Ji
,
C.
,
Endler
,
E.
,
Li
,
R.
,
Liu
,
L.
,
Li
,
Y.
,
Zheng
,
S.
,
Vetterlein
,
S.
,
Gao
,
M.
,
Du
,
J.
,
Parkes
,
M.
,
Ouyang
,
M.
,
Marinescu
,
M.
,
Offer
,
G.
, and
Wu
,
B.
,
2019
, “
Lithium-Ion Battery Fast Charging: A Review
,”
ETransportation
,
1
, p.
100011
. 10.1016/j.etran.2019.100011
6.
Lu
,
L.
,
Han
,
X.
,
Li
,
J.
,
Hua
,
J.
, and
Ouyang
,
M.
,
2013
, “
A Review on the Key Issues for Lithium-Ion Battery Management in Electric Vehicles
,”
J. Power Sources
,
226
, pp.
272
288
. 10.1016/j.jpowsour.2012.10.060
7.
Ren
,
D.
,
Lu
,
L.
,
Shen
,
P.
,
Feng
,
X.
,
Han
,
X.
, and
Ouyang
,
M.
,
2019
, “
Battery Remaining Discharge Energy Estimation Based on Prediction of Future Operating Conditions
,”
J. Energy Storage
,
25
, p.
100836
. 10.1016/j.est.2019.100836
8.
Bitsche
,
O.
, and
Gutmann
,
G.
,
2004
, “
Systems for Hybrid Cars
,”
J. Power Sources
,
127
(
1–2
), pp.
8
15
. 10.1016/j.jpowsour.2003.09.003
9.
Cheng
,
K. W. E.
,
Divakar
,
B. P.
,
Wu
,
H.
,
Ding
,
K.
, and
Ho
,
H. F.
,
2011
, “
Battery-Management System (BMS) and SOC Development for Electrical Vehicles
,”
IEEE Trans. Veh. Technol.
,
60
(
1
), pp.
76
88
. 10.1109/TVT.2010.2089647
10.
Abraham
,
D. P.
,
Roth
,
E. P.
,
Kostecki
,
R.
,
McCarthy
,
K.
,
MacLaren
,
S.
, and
Doughty
,
D. H.
,
2006
, “
Diagnostic Examination of Thermally Abused High-Power Lithium-Ion Cells
,”
J. Power Sources
,
161
(
1
), pp.
648
657
. 10.1016/j.jpowsour.2006.04.088
11.
Roth
,
E. P.
, and
Doughty
,
D. H.
,
2004
, “
Thermal Abuse Performance of High-Power 18650 Li-ion Cells
,”
J. Power Sources
,
128
(
2
), pp.
308
318
. 10.1016/j.jpowsour.2003.09.068
12.
Doughty
,
D. H.
,
Roth
,
E. P.
,
Crafts
,
C. C.
,
Nagasubramanian
,
G.
,
Henriksen
,
G.
, and
Amine
,
K.
,
2005
, “
Effects of Additives on Thermal Stability of Li ion Cells
,”
J. Power Sources
,
146
(
1–2
), pp.
116
120
. 10.1016/j.jpowsour.2005.03.170
13.
Wen
,
C. Y.
,
Jhu
,
C. Y.
,
Wang
,
Y. W.
,
Chiang
,
C. C.
, and
Shu
,
C. M.
,
2012
, “
Thermal Runaway Features of 18650 Lithium-Ion Batteries for LiFePO 4 Cathode Material by DSC and VSP2
,”
J. Therm. Anal. Calorim.
,
109
(
3
), pp.
1297
1302
. 10.1007/s10973-012-2573-2
14.
Lu
,
T. Y.
,
Chiang
,
C. C.
,
Wu
,
S. H.
,
Chen
,
K. C.
,
Lin
,
S. J.
,
Wen
,
C. Y.
, and
Shu
,
C. M.
,
2013
, “
Thermal Hazard Evaluations of 18650 Lithium-ion Batteries by An Adiabatic Calorimeter
,”
J. Therm. Anal. Calorim.
,
114
(
3
), pp.
1083
1088
. 10.1007/s10973-013-3137-9
15.
Jhu
,
C. Y.
,
Wang
,
Y. W.
,
Wen
,
C. Y.
,
Chiang
,
C. C.
, and
Shu
,
C. M.
,
2011
, “
Self-reactive Rating of Thermal Runaway Hazards on 18650 Lithium-Ion Batteries
,”
J. Therm. Anal. Calorim.
,
106
(
1
), pp.
159
163
. 10.1007/s10973-011-1452-6
16.
Jhu
,
C. Y.
,
Wang
,
Y. W.
,
Shu
,
C. M.
,
Chang
,
J. C.
, and
Wu
,
H. C.
,
2011
, “
Thermal Explosion Hazards on 18650 Lithium ion Batteries With a VSP2 Adiabatic Calorimeter
,”
J. Hazard. Mater.
,
192
(
1
), pp.
99
107
. 10.1016/j.jhazmat.2011.04.097
17.
Jhu
,
C. Y.
,
Wang
,
Y. W.
,
Wen
,
C. Y.
, and
Shu
,
C. M.
,
2012
, “
Thermal Runaway Potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 Batteries Determined With Adiabatic Calorimetry Methodology
,”
Appl. Energy
,
100
, pp.
127
131
. 10.1016/j.apenergy.2012.05.064
18.
Chen
,
W.-C.
,
Li
,
J.-D.
,
Shu
,
C.-M.
, and
Wang
,
Y.-W.
,
2015
, “
Effects of Thermal Hazard on 18650 Lithium-Ion Battery Under Different States of Charge
,”
J. Therm. Anal. Calorim.
,
121
(
1
), pp.
525
531
. 10.1007/s10973-015-4672-3
19.
Golubkov
,
A. W.
,
Fuchs
,
D.
,
Wagner
,
J.
,
Wiltsche
,
H.
,
Stangl
,
C.
,
Fauler
,
G.
,
Voitic
,
G.
,
Thaler
,
A.
, and
Hacker
,
V.
,
2014
, “
Thermal-runaway Experiments on Consumer Li-Ion Batteries With Metal-Oxide and Olivin-Type Cathodes
,”
RSC Adv.
,
4
(
7
), pp.
3633
3642
. 10.1039/C3RA45748F
20.
Liu
,
X.
,
Stoliarov
,
S. I.
,
Denlinger
,
M.
,
Masias
,
A.
, and
Snyder
,
K.
,
2015
, “
Comprehensive Calorimetry of the Thermally-Induced Failure of a Lithium Ion Battery
,”
J. Power Sources
,
280
, pp.
516
525
. 10.1016/j.jpowsour.2015.01.125
21.
Feng
,
X.
,
Fang
,
M.
,
He
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Wang
,
H.
, and
Zhang
,
M.
,
2014
, “
Thermal Runaway Features of Large Format Prismatic Lithium Ion Battery Using Extended Volume Accelerating Rate Calorimetry
,”
J. Power Sources
,
255
, pp.
294
301
. 10.1016/j.jpowsour.2014.01.005
22.
Feng
,
X.
,
Zheng
,
S.
,
Ren
,
D.
,
He
,
X.
,
Wang
,
L.
,
Cui
,
H.
,
Liu
,
X.
,
Jin
,
C.
,
Zhang
,
F.
,
Xu
,
C.
,
Hsu
,
H.
,
Gao
,
S.
,
Chen
,
T.
,
Li
,
Y.
,
Wang
,
T.
,
Wang
,
H.
,
Li
,
M.
, and
Ouyang
,
M.
,
2019
, “
Investigating the Thermal Runaway Mechanisms of Lithium-Ion Batteries Based on Thermal Analysis Database
,”
Appl. Energy
,
246
, pp.
53
64
. 10.1016/j.apenergy.2019.04.009
23.
Ren
,
D.
,
Hsu
,
H.
,
Li
,
R.
,
Feng
,
X.
,
Guo
,
D.
,
Han
,
X.
,
Lu
,
L.
,
He
,
X.
,
Gao
,
S.
,
Hou
,
J.
,
Li
,
Y.
,
Wang
,
Y.
, and
Ouyang
,
M.
,
2019
, “
A Comparative Investigation of Aging Effects on Thermal Runaway Behavior of Lithium-Ion Batteries
,”
ETransportation
,
2
, p.
100034
. 10.1016/j.etran.2019.100034
24.
Han
,
X.
,
Lu
,
L.
,
Zheng
,
Y.
,
Feng
,
X.
,
Li
,
Z.
,
Li
,
J.
, and
Ouyang
,
M.
,
2019
, “
A Review on the key Issues of the Lithium Ion Battery Degradation Among the Whole Life Cycle
,”
ETransportation
,
1
, p.
100005
. 10.1016/j.etran.2019.100005
25.
Feng
,
X.
,
Merla
,
Y.
,
Weng
,
C.
,
Ouyang
,
M.
,
He
,
X.
,
Liaw
,
B. Y.
,
Santhanagopalan
,
S.
,
Li
,
X.
,
Liu
,
P.
,
Lu
,
L.
,
Han
,
X.
,
Ren
,
D.
,
Wang
,
Y.
,
Li
,
R.
,
Jin
,
C.
,
Huang
,
P.
,
Yi
,
M.
,
Wang
,
L.
,
Zhao
,
Y.
,
Patel
,
Y.
, and
Offer
,
G.
,
2020
, “
A Reliable Approach of Differentiating Discrete Sampled-Data for Battery Diagnosis
,”
ETransportation
,
3
, p.
100051
. 10.1016/j.etran.2020.100051
26.
Röder
,
P.
,
Baba
,
N.
, and
Wiemhöfer
,
H.-D.
,
2014
, “
A Detailed Thermal Study of a Li[Ni0.33Co0.33Mn0.33]O2/LiMn2O4-Based Lithium ion Cell by Accelerating Rate and Differential Scanning Calorimetry
,”
J. Power Sources
,
248
, pp.
978
987
. 10.1016/j.jpowsour.2013.09.146
27.
Lu
,
W.
,
Chen
,
Z.
,
Joachin
,
H.
,
Prakash
,
J.
,
Liu
,
J.
, and
Amine
,
K.
,
2007
, “
Thermal and Electrochemical Characterization of MCMB/LiNi1/3Co1/3Mn1/3O2 Using LiBoB as an Electrolyte Additive
,”
J. Power Sources
,
163
(
2
), pp.
1074
1079
. 10.1016/j.jpowsour.2006.09.010
28.
Ren
,
D.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Zheng
,
S.
,
Li
,
J.
, and
He
,
X.
,
2017
, “
An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery
,”
J. Power Sources
,
364
, pp.
328
340
. 10.1016/j.jpowsour.2017.08.035
29.
Ren
,
D.
,
Feng
,
X.
,
Lu
,
L.
,
He
,
X.
, and
Ouyang
,
M.
,
2019
, “
Overcharge Behaviors and Failure Mechanism of Lithium-Ion Batteries Under Different Test Conditions
,”
Appl. Energy
,
250
, pp.
323
332
. 10.1016/j.apenergy.2019.05.015
30.
Liu
,
X.
,
Ren
,
D.
,
Hsu
,
H.
,
Feng
,
X.
,
Xu
,
G. L.
,
Zhuang
,
M.
,
Gao
,
H.
,
Lu
,
L.
,
Han
,
X.
,
Chu
,
Z.
,
Li
,
J.
,
He
,
X.
,
Amine
,
K.
, and
Ouyang
,
M.
,
2018
, “
Thermal Runaway of Lithium-Ion Batteries Without Internal Short Circuit
,”
Joule
,
2
(
10
), pp.
1
18
. 10.1016/j.joule.2018.06.015
31.
Wang
,
H.
,
Tang
,
A.
, and
Huang
,
K.
,
2011
, “
Thermal Behavior Investigation of LiNi1/3Co1/3Mn1/3O2-Based Li-ion Battery Under Overcharged Test
,”
Chin. J. Chem.
,
29
(
1
), pp.
27
32
. 10.1002/cjoc.201190056
32.
Jouanneau
,
S.
,
MacNeil
,
D. D.
,
Lu
,
Z.
,
Beattie
,
S. D.
,
Murphy
,
G.
, and
Dahn
,
J. R.
,
2003
, “
Morphology and Safety of Li[NixCo1−2xMnx]O2 (0≤x≤1/2)
,”
J. Electrochem. Soc.
,
150
(
10
), p.
A1299
. 10.1149/1.1602077
33.
MacNeil
,
D. D.
,
Lu
,
Z.
, and
Dahn
,
J. R.
,
2002
, “
Structure and Electrochemistry of Li[NixCo1−2xMnx]O2 (0≤x≤1/2)
,”
J. Electrochem. Soc.
,
149
(
10
), p.
A1332
. 10.1149/1.1505633
34.
Belharouak
,
I.
,
Lu
,
W.
,
Vissers
,
D.
, and
Amine
,
K.
,
2006
, “
Safety Characteristics of Li(Ni0.8Co0.15Al0.05)O2 and Li(Ni1/3Co1/3Mn1/3)O2
,”
Electrochem. Commun.
,
8
(
2
), pp.
329
335
. 10.1016/j.elecom.2005.12.007
35.
Wang
,
Q.
,
Sun
,
J.
,
Yao
,
X.
, and
Chen
,
C.
,
2005
, “
Thermal Stability of LiPF6/EC + DEC Electrolyte With Charged Electrodes for Lithium ion Batteries
,”
Thermochim. Acta
,
437
(
1–2
), pp.
12
16
. 10.1016/j.tca.2005.06.010
36.
Zhao
,
P.
,
Yang
,
J.
,
Shang
,
Y.
,
Wang
,
L.
,
Fang
,
M.
,
Wang
,
J.
, and
He
,
X.
,
2015
, “
Surface Modification of Polyolefin Separators for Lithium ion Batteries to Reduce Thermal Shrinkage Without Thickness Increase
,”
J. Energy Chem.
,
24
(
2
), pp.
138
144
. 10.1016/S2095-4956(15)60294-7
37.
Coman
,
P. T.
,
Rayman
,
S.
, and
White
,
R. E.
,
2016
, “
A Lumped Model of Venting During Thermal Runaway in a Cylindrical Lithium Cobalt Oxide Lithium-ion Cell
,”
J. Power Sources
,
307
, pp.
56
62
. 10.1016/j.jpowsour.2015.12.088
38.
Hildebrand
,
S.
,
Rheinfeld
,
A.
,
Friesen
,
A.
,
Haetge
,
J.
,
Schappacher
,
F. M.
,
Jossen
,
A.
, and
Winter
,
M.
,
2018
, “
Thermal Analysis of LiNi0.4Co0.2Mn0.4O2 /Mesocarbon Microbeads Cells and Electrodes: State-of-Charge and State-of-Health Influences on Reaction Kinetics
,”
J. Electrochem. Soc.
,
165
(
2
), pp.
A104
A117
. 10.1149/2.0361802jes
39.
Reynier
,
Y.
,
Yazami
,
R.
, and
Fultz
,
B.
,
2007
, “
XRD Evidence of Macroscopic Composition Inhomogeneities in the Graphite-Lithium Electrode
,”
J. Power Sources
,
165
(
2
), pp.
616
619
. 10.1016/j.jpowsour.2006.10.023
40.
Belharouak
,
I.
,
Sun
,
Y. K.
,
Liu
,
J.
, and
Amine
,
K.
,
2003
, “
Li(Ni1/3Co1/3Mn1/3)O2 as a Suitable Cathode for High Power Applications
,”
J. Power Sources
,
123
(
2
), pp.
247
252
. 10.1016/S0378-7753(03)00529-9
41.
Yoon
,
W. S.
,
Chung
,
K. Y.
,
McBreen
,
J.
, and
Yang
,
X. Q.
,
2006
, “
A Comparative Study on Structural Changes of LiCo1/3Ni1/3Mn1/3O2 and LiNi0.8Co0.15Al0.05O2 During First Charge Using in Situ XRD
,”
Electrochem. Commun.
,
8
(
8
), pp.
1257
1262
. 10.1016/j.elecom.2006.06.005
42.
Bak
,
S.
,
Hu
,
E.
,
Zhou
,
Y.
,
Yu
,
X.
,
Senanayake
,
S. D.
,
Cho
,
S.
,
Kim
,
K.
,
Chung
,
K.
,
Yang
,
X.
, and
Nam
,
K.
,
2014
, “
Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy
,”
ACS Appl. Mater. Interfaces
,
6
(
24
), pp.
22594
22601
. 10.1021/am506712c
43.
Xiang
,
H.
,
Chen
,
J.
,
Li
,
Z.
, and
Wang
,
H.
,
2011
, “
An Inorganic Membrane as a Separator for Lithium-ion Battery
,”
J. Power Sources
,
196
(
20
), pp.
8651
8655
. 10.1016/j.jpowsour.2011.06.055
You do not currently have access to this content.