Abstract

The thermal runaway process limits the development and wide application of lithium-ion batteries. More and more researchers are paying attention to how to suppress thermal runaway caused by thermal, electrical, mechanical, and other abuse conditions. Temperature is an important indicator in the process of battery thermal runaway. Using large heat dissipation flow to cool the battery to a safe temperature range can achieve a good thermal runaway suppression effect. This paper discusses the influence of heat dissipation flow on the thermal runaway through combining simulation and experiment. First, a simulation model is established and shows good agreement with the experiment. Both the simulated and experimental results found that an application with a short duration and large heat dissipation flow can achieve a better cooling effect at a suitable battery temperature. Then, we discussed the minimum heat dissipation coefficient required to suppress battery thermal runaway by applying emergency cooling at different battery temperatures. When the trigger temperature rises from 166 °C to 178 °C, the minimum heat dissipation flow required increases from 72 W/m2 to 1391 W/m2. At last, the relationship between trigger temperature and minimum heat dissipation flow was obtained. This provides a reference for emergency cooling of battery thermal runaway.

References

1.
Saw
,
L. H.
,
King
,
Y. J.
,
Yew
,
M. C.
,
Ng
,
T. C.
,
Chong
,
W. T.
, and
Pambudi
,
N. A.
,
2017
, “
Feasibility Study of Mist Cooling for Lithium-Ion Battery
,”
Energy Procedia
,
142
, pp.
2592
2597
.
2.
Saw
,
L. H.
,
Poon
,
H. M.
,
Thiam
,
H. S.
,
Cai
,
Z.
,
Chong
,
W. T.
,
Pambudi
,
N. A.
, and
King
,
Y. J.
,
2018
, “
Novel Thermal Management System Using Mist Cooling for Lithium-Ion Battery Packs
,”
Appl. Energy
,
223
, pp.
146
158
.
3.
Zhang
,
L.
,
Duan
,
Q.
,
Liu
,
Y.
,
Xu
,
J.
,
Sun
,
J.
,
Xiao
,
H.
, and
Wang
,
Q.
,
2020
, “
Experimental Investigation of Water Spray on Suppressing Lithium-Ion Battery Fires
,”
Fire Saf. J.
,
120
, p.
103117
.
4.
Gao
,
Q.
,
Liu
,
Y.
,
Wang
,
G.
,
Deng
,
F.
, and
Zhu
,
J.
,
2019
, “
An Experimental Investigation of Refrigerant Emergency Spray on Cooling and Oxygen Suppression for Overheating Power Battery
,”
J. Power Sources
,
415
, pp.
33
43
.
5.
Liu
,
T.
,
Liu
,
Y.
,
Wang
,
X.
,
Kong
,
X.
, and
Li
,
G.
,
2019
, “
Cooling Control of Thermally-Induced Thermal Runaway in 18,650 Lithium Ion Battery With Water Mist
,”
Energy Convers. Manage.
,
199
, p.
111969
.
6.
Huang
,
Y.
,
Wu
,
Y.
, and
Liu
,
B.
,
2021
, “
Experimental Investigation Into the Use of Emergency Spray on Suppression of Battery Thermal Runaway
,”
J. Energy Storage
,
38
, p.
102546
.
7.
Qin
,
P.
,
Jia
,
Z.
,
Jin
,
K.
,
Duan
,
Q.
,
Sun
,
J.
, and
Wang
,
Q.
,
2021
, “
The Experimental Study on a Novel Integrated System With Thermal Management and Rapid Cooling for Battery Pack Based on C6F12O Spray Cooling in a Closed-Loop
,”
J. Power Sources
,
5516
, p.
230659
.
8.
Meng
,
X.
,
Li
,
S.
,
Fu
,
W.
,
Chen
,
Y.
,
Duan
,
Q.
, and
Wang
,
Q.
,
2022
, “
Experimental Study of Intermittent Spray Cooling on Suppression for Lithium Iron Phosphate Battery Fires
,”
eTransportation
,
11
, p.
100142
.
9.
Zhang
,
L.
,
Duan
,
Q.
,
Meng
,
X.
,
Jin
,
K.
,
Xu
,
J.
,
Sun
,
J.
, and
Wang
,
Q.
,
2022
, “
Experimental Investigation on Intermittent Spray Cooling and Toxic Hazards of Lithium-Ion Battery Thermal Runaway
,”
Energy Convers. Manage.
,
252
, p.
115091
.
10.
Ren
,
D.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Zheng
,
S.
,
Li
,
J.
, and
He
,
X.
,
2017
, “
An Electrochemical-Thermal Coupled Overcharge-to-Thermal-Runaway Model for Lithium Ion Battery
,”
J. Power Sources
,
364
, pp.
328
340
.
11.
Ren
,
D.
,
Liu
,
X.
,
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2018
, “
Model-Based Thermal Runaway Prediction of Lithium-Ion Batteries From Kinetics Analysis of Cell Components
,”
Appl. Energy
,
228
, pp.
633
644
.
12.
Ostanek
,
J. K.
,
Li
,
W.
,
Mukherjee
,
P. P.
,
Crompton
,
K. R.
, and
Hacker
,
C.
,
2020
, “
Simulating Onset and Evolution of Thermal Runaway in Li-Ion Cells Using a Coupled Thermal and Venting Model
,”
Appl. Energy
,
268
, p.
114972
.
13.
Lee
,
K.-J.
,
Smith
,
K.
,
Pesaran
,
A.
, and
Kim
,
G.-H.
,
2013
, “
Three Dimensional Thermal-, Electrical-, and Electrochemical-Coupled Model for Cylindrical Wound Large Format Lithium-Ion Batteries
,”
J. Power Sources
,
241
, pp.
20
32
.
14.
Coman
,
P. T.
,
Darcy
,
E. C.
,
Veje
,
C. T.
, and
White
,
R. E.
,
2017
, “
Modelling Li-Ion Cell Thermal Runaway Triggered by an Internal Short Circuit Device Using an Efficiency Factor and Arrhenius Formulations
,”
J. Electrochem. Soc.
,
164
(
4
), pp.
A587
A593
.
15.
Kim
,
G.-H.
,
Pesaran
,
A.
, and
Spotnitz
,
R.
,
2007
, “
A Three-Dimensional Thermal Abuse Model for Lithium-Ion Cells
,”
J. Power Sources
,
170
(
2
), pp.
476
489
.
16.
Feng
,
X.
,
2016
,
Thermal Runaway Initiation and Propagation of Lithium-Ion Traction Battery for Electric Vehicle: Test, Modeling and Prevention (in Chinese)
,
Tsinghua University
,
Beijing
.
17.
Feng
,
X.
,
He
,
X.
,
Ouyang
,
M.
,
Wang
,
L.
,
Lu
,
L.
,
Ren
,
D.
, and
Santhanagopalan
,
S.
,
2018
, “
A Coupled Electrochemical-Thermal Failure Model for Predicting the Thermal Runaway Behavior of Lithium-Ion Batteries
,”
J. Electrochem. Soc.
,
165
(
16
), pp.
A3748
A3765
.
18.
Finegan
,
D. P.
,
Darst
,
J.
,
Walker
,
W.
,
Li
,
Q.
,
Yang
,
C.
,
Jervis
,
R.
,
Heenan
,
T. M. M.
, et al
,
2019
, “
Modelling and Experiments to Identify High-Risk Failure Scenarios for Testing the Safety of Lithium-Ion Cells
,”
J. Power Sources
,
417
, pp.
29
41
.
19.
Al Hallaj
,
S.
,
Maleki
,
H.
,
Hong
,
J. S.
, and
Selman
,
J. R.
,
1999
, “
Thermal Modeling and Design Considerations of Lithium-Ion Batteries
,”
J. Power Sources
,
83
(
1–2
), pp.
1
8
.
20.
Hu
,
Z.
,
He
,
X.
,
Restuccia
,
F.
,
Yuan
,
H.
, and
Rein
,
G.
,
2021
, “
Numerical Study of Scale Effects on Self-Heating Ignition of Lithium-Ion Batteries Stored in Boxes, Shelves and Racks
,”
Appl. Therm. Eng.
,
190
, p.
116780
.
21.
Kong
,
D.
,
Wang
,
G.
,
Ping
,
P.
, and
Wen
,
J.
,
2021
, “
Numerical Investigation of Thermal Runaway Behavior of Lithium-Ion Batteries With Different Battery Materials and Heating Conditions
,”
Appl. Therm. Eng.
,
189
, p.
116661
.
22.
Zhang
,
Y.
,
Mei
,
W.
,
Qin
,
P.
,
Duan
,
Q.
, and
Wang
,
Q.
,
2021
, “
Numerical Modeling on Thermal Runaway Triggered by Local Overheating for Lithium Iron Phosphate Battery
,”
Appl. Therm. Eng.
,
192
, p.
116928
.
23.
Peng
,
P.
, and
Jiang
,
F.
,
2016
, “
Thermal Safety of Lithium-Ion Batteries With Various Cathode Materials: A Numerical Study
,”
Int. J. Heat Mass Transfer
,
103
, pp.
1008
1016
.
You do not currently have access to this content.