Abstract

In this study, an islanded microgrid system is proposed that integrates identical stacks of solid oxide fuel cell and electrolyzer to achieve a thermally self-sustained energy storage system. Thermal management of the solid oxide electrolysis cell (SOEC) is achieved by the use of heat from the solid oxide fuel cell (SOFC) with a heat exchanger network and control strategies. The SOFC meets the building electricity demand and the heat generated from its electrochemical reactions is transferred to the SOEC for the endothermic heat and standby demands. Each component is physically modeled in Simulink and ultimately integrated at the system level for dynamic analyses. The current work simulates a system comprised of a wind farm in Palm Springs, CA, coupled with the SOEC (for H2 generation), and an industrial building powered by the SOFC. Results from two weeks of operation using the measured building and wind data showed that despite fluctuating power profiles, average temperature, and local temperature gradients of both the SOEC and SOFC were within desired tolerances. However, for severe conditions of wind power deficit, H2 had to be supplied from previous windy days’ storage or imported.

References

1.
Roberts
,
D.
California Just Adopted Its Boldest Energy Target Yet: 100% Clean Electricity, https://www.vox.com/energy-and-environment/2018/8/31/17799094/california-100-percent-clean-energy-target-brown-de-leon
2.
Schermeyer
,
H.
,
Vergara
,
C.
, and
Fichtner
,
W.
,
2018
, “
Renewable Energy Curtailment: A Case Study on Today’s and Tomorrow’s Congestion Management
,”
Energy Policy
,
112
, pp.
427
436
.
3.
Lyseng
,
B.
,
Niet
,
T.
,
English
,
J.
,
Keller
,
V.
,
Palmer-Wilson
,
K.
,
Robertson
,
B.
,
Rowe
,
A.
, and
Wild
,
P.
,
2018
, “
System-Level Power-to-Gas Energy Storage for High Penetrations of Variable Renewables
,”
Int. J. Hydrogen Energy
,
43
(
4
), pp.
1966
1979
.
4.
Brisse
,
A.
,
Schefold
,
J.
, and
Zahid
,
M.
,
2008
, “
High Temperature Water Electrolysis in Solid Oxide Cells
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5375
5382
.
5.
Selimovic
,
A.
,
Kemm
,
M.
,
Torisson
,
T.
, and
Assadi
,
M.
,
2005
, “
Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells
,”
J. Power Sources
,
145
(
2
), pp.
463
469
.
6.
Chiang
,
L. K.
,
Liu
,
H. C.
,
Shiu
,
Y. H.
,
Lee
,
C. H.
, and
Lee
,
R. Y.
,
2010
, “
Thermal Stress and Thermo-electrochemical Analysis of a Planar Anode-Supported Solid Oxide Fuel Cell: Effects of Anode Porosity
,”
J. Power Sources
,
195
(
7
), pp.
1895
1904
.
7.
Guan
,
W.
,
Du
,
Z.
,
Wang
,
J.
,
Jiang
,
L.
,
Yang
,
J.
, and
Zhou
,
X. D.
,
2020
, “
Mechanisms of Performance Degradation Induced by Thermal Cycling in Solid Oxide Fuel Cell Stacks With Flat-Tube Anode-Supported Cells Based on Double-Sided Cathodes
,”
Int. J. Hydrogen Energy
,
45
(
38
), pp.
19840
19846
.
8.
Peksen
,
M.
,
Al-Masri
,
A.
,
Blum
,
L.
, and
Stolten
,
D.
,
2013
, “
3D Transient Thermomechanical Behaviour of a Full Scale SOFC Short Stack
,”
Int. J. Hydrogen Energy
,
38
(
10
), pp.
4099
4107
.
9.
Monaco
,
F.
,
Hubert
,
M.
,
Vulliet
,
J.
,
Ouweltjes
,
J. P.
,
Montinaro
,
D.
,
Cloetens
,
P.
,
Piccardo
,
P.
,
Lefebvre-Joud
,
F.
, and
Laurencin
,
J.
,
2019
, “
Degradation of Ni-YSZ Electrodes in Solid Oxide Cells: Impact of Polarization and Initial Microstructure on the Ni Evolution
,”
J. Electrochem. Soc.
,
166
(
15
), pp.
F1229
F1242
.
10.
Moçoteguy
,
P.
, and
Brisse
,
A.
,
2013
, “
A Review and Comprehensive Analysis of Degradation Mechanisms of Solid Oxide Electrolysis Cells
,”
Int. J. Hydrogen Energy.
,
30
(
36
), pp.
15887
15902
.
11.
Sreedhar
,
I.
,
Agarwal
,
B.
,
Goyal
,
P.
, and
Agarwal
,
A.
,
2020
, “
An Overview of Degradation in Solid Oxide Fuel Cells-Potential Clean Power Sources
,”
J. Solid State Electrochem.
,
24
(
6
), pp.
1239
1270
.
12.
Lay-Grindler
,
E.
,
Laurencin
,
J.
,
Villanova
,
J.
,
Cloetens
,
P.
,
Bleuet
,
P.
,
Mansuy
,
A.
,
Mougin
,
J.
, and
Delette
,
G.
,
2014
, “
Degradation Study by 3D Reconstruction of a Nickel-Yttria Stabilized Zirconia Cathode After High Temperature Steam Electrolysis Operation
,”
J. Power Sources
,
269
, pp.
927
936
.
13.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2008
, “
Technological Development of Hydrogen Production by Solid Oxide Electrolyzer Cell (SOEC)
,”
Int. J. Hydrogen Energy
,
33
(
9
), pp.
2337
2354
.
14.
O’Brien
,
J. E.
,
McKellar
,
M. G.
,
Harvego
,
E. A.
, and
Stoots
,
C. M.
,
2010
, “
High-temperature Electrolysis for Large-Scale Hydrogen and Syngas Production From Nuclear Energy—Summary of System Simulation and Economic Analyses
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
4808
4819
.
15.
He
,
W.
,
Namar
,
M. M.
,
Li
,
Z.
,
Maleki
,
A.
,
Tlili
,
I.
, and
Safdari Shadloo
,
M.
,
2020
, “
Thermodynamic Analysis of a Solar-Driven High-Temperature Steam Electrolyzer for Clean Hydrogen Production
,”
Appl. Therm. Eng.
,
172
, p.
115152
.
16.
Tolga Balta
,
M.
,
Dincer
,
I.
, and
Hepbasli
,
A.
,
2009
, “
Thermodynamic Assessment of Geothermal Energy Use in Hydrogen Production
,”
Int. J. Hydrogen Energy
,
34
(
7
), pp.
2925
2939
.
17.
Sigurvinsson
,
J.
,
Mansilla
,
C.
,
Lovera
,
P.
, and
Werkoff
,
F.
,
2007
, “
Can High Temperature Steam Electrolysis Function With Geothermal Heat?
,”
Int. J. Hydrogen Energy
,
32
(
9
), pp.
1174
1182
.
18.
Mansilla
,
C.
,
Sigurvinsson
,
J.
,
Bontemps
,
A.
,
Maréchal
,
A.
, and
Werkoff
,
F.
,
2007
, “
Heat Management for Hydrogen Production by High Temperature Steam Electrolysis
,”
Energy
,
32
(
4
), pp.
423
430
.
19.
Mottaghizadeh
,
P.
,
Santhanam
,
S.
,
Heddrich
,
M. P.
,
Friedrich
,
K. A.
, and
Rinaldi
,
F.
,
2017
, “
Process Modeling of a Reversible Solid Oxide Cell (r-SOC) Energy Storage System Utilizing Commercially Available SOC Reactor
,”
Energy Convers. Manage.
,
142
, pp.
477
493
.
21.
Datasets—OpenEI DOE Open Data, https://openei.org/doe-opendata/dataset, Accessed April 15, 2020.
22.
Fardadi
,
M.
,
Mueller
,
F.
, and
Jabbari
,
F.
,
2010
, “
Feedback Control of Solid Oxide Fuel Cell Spatial Temperature Variation
,”
J. Power Sources
,
195
(
13
), pp.
4222
4233
.
23.
Zheng
,
Y.
,
Luo
,
Y.
,
Shi
,
Y.
, and
Cai
,
N.
,
2017
, “
Dynamic Processes of Mode Switching in Reversible Solid Oxide Fuel Cells
,”
J. Energy Eng.
,
143
(
6
), p.
04017057
.
24.
Kazempoor
,
P.
,
Dorer
,
V.
, and
Ommi
,
F.
,
2010
, “
Modelling and Performance Evaluation of Solid Oxide Fuel Cell for Building Integrated Co- and Polygeneration
,”
Fuel Cells—From Fundam. Syst.
,
10
(
6
), pp.
1074
1094
.
25.
Noren
,
D. A.
, and
Hoffman
,
M. A.
,
2005
, “
Clarifying the Butler-Volmer Equation and Related Approximations for Calculating Activation Losses in Solid Oxide Fuel Cell Models
,”
J. Power Sources
,
152
(
1–2
), pp.
175
181
.
26.
Ni
,
M.
,
Leung
,
M. K. H.
, and
Leung
,
D. Y. C.
,
2006
, “
A Modeling Study on Concentration Overpotentials of a Reversible Solid Oxide Fuel Cell
,”
J. Power Sources
,
163
(
1 SPEC. ISS.
), pp.
460
466
.
27.
Yoon
,
K. J.
,
Lee
,
S. I.
,
An
,
H.
,
Kim
,
J.
,
Son
,
J. W.
,
Lee
,
J. H.
,
Je
,
H. J.
,
Lee
,
H. W.
, and
Kim
,
B. K.
,
2014
, “
Gas Transport in Hydrogen Electrode of Solid Oxide Regenerative Fuel Cells for Power Generation and Hydrogen Production
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
3868
3878
.
28.
Mueller
,
F.
,
Jabbari
,
F.
,
Gaynor
,
R.
, and
Brouwer
,
J.
,
2007
, “
Novel Solid Oxide Fuel Cell System Controller for Rapid Load Following
,”
J. Power Sources
,
172
(
1
), pp.
308
323
.
29.
Fardadi
,
M.
,
Mclarty
,
D. F.
,
Brouwer
,
J.
, and
Jabbari
,
F.
,
2014
, “
Enhanced Performance of Counter Flow SOFC With Partial Internal Reformation
,”
Int. J. Hydrogen Energy
,
39
(
34
), pp.
19753
19766
.
30.
Aguiar
,
P.
,
Adjiman
,
C. S.
, and
Brandon
,
N. P.
,
2005
, “
Anode-Supported Intermediate-Temperature Direct Internal Reforming Solid Oxide Fuel Cell II. Model-Based Dynamic Performance and Control
,”
J. Power Sources
,
147
(
1–2
), pp.
136
147
.
31.
Mottaghizadeh
,
P.
,
Fardadi
,
M.
,
Jabbari
,
F.
, and
Brouwer
,
J.
,
2021
, “
Dynamics and Control of a Thermally Self-sustaining Energy Storage System Using Integrated Solid Oxide Cells for an Islanded Building
,”
Int. J. Hydrogen Energy
,
46
(
49
), pp.
24891
24908
.
You do not currently have access to this content.