Abstract

Chromium poisoning of the air electrode remains an obstacle to the long-term performance of solid oxide fuel cells (SOFCs). In Sr-doped LaMnO3 (LSM) air electrodes, the poisoning process results in two types of deposits, chromium oxide (Cr2O3), and Mn, Cr spinel (MnCr2O4). The former forms electrochemically and the latter forms via a chemical reaction. By applying a small anodic reverse bias, Cr2O3 deposits can be removed because their formation is electrochemical in nature. However, MnCr2O4 deposits remain because their formation is chemical, rather than electrochemical, in nature. In situ chemical decomposition of the Mn, Cr spinel was investigated as an alternate removal method as thermodynamics supports its decomposition into constituent oxides below ∼540 °C in pure oxygen. The spinel decomposition process was characterized using thermogravimetric and X-ray diffraction analyses. The experimentally determined rate of spinel decomposition was undetectable (very slow) with isolated MnCr2O4 powders. The addition of 10 mol% gadolinia doped ceria (GDC) and silver powders significantly increased the rate of decomposition. However, the rate is limited by the diffusion of oxygen through the decomposed oxide layer. Although one strategy may be the addition of GDC and silver to the LSM air electrode to enhance spinel decomposition, the more effective mitigation strategy would be to prevent the formation of MnCr2O4 spinel in the first place through the removal of the reactants: Cr2O3 via electrochemical cleaning and mobile Mn ions in the zirconia electrolyte by incorporating a diffusion barrier layer such as GDC between the air electrode and electrolyte.

References

1.
Horita
,
T.
,
2021
, “
Chromium Poisoning for Prolonged Lifetime of Electrodes in Solid Oxide Fuel Cells—Review
,”
Ceram. Int.
,
47
(
6
), pp.
7293
7306
.
2.
Zhou
,
L.
,
Mason
,
J. H.
,
Li
,
W.
, and
Liu
,
X.
,
2020
, “
Comprehensive Review of Chromium Deposition and Poisoning of Solid Oxide Fuel Cells (SOFCs) Cathode Materials
,”
Renewable Sustainable Energy Rev.
,
134
, p.
110320
.
3.
Jiang
,
S. P.
,
Zhang
,
S.
, and
Zhen
,
Y. D.
,
2005
, “
Early Interaction Between Fe-Cr Alloy Metallic Interconnect and Sr-Doped LaMnO3 Cathodes of Solid Oxide Fuel Cells
,”
J. Mater. Res.
,
20
(
3
), pp.
747
758
.
4.
Heo
,
S. J.
,
Hong
,
J.
,
Aphale
,
A.
,
Hu
,
B.
, and
Singh
,
P.
,
2019
, “
Chromium Poisoning of La1-xSrxMnO3±δ Cathodes and Electrochemical Validation of Chromium Getters in Intermediate Temperature-Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
166
(
13
), pp.
F990
F995
.
5.
Harrison
,
C. M.
,
Slater
,
P. R.
, and
Steinberger-Wilckens
,
R.
,
2020
, “
A Review of Solid Oxide Fuel Cell Cathode Materials With Respect to Their Resistance to the Effects of Chromium Poisoning
,”
Solid State Ionics
,
354
, p.
115410
.
6.
Sun
,
C.
,
Hui
,
R.
, and
Roller
,
J.
,
2010
, “
Cathode Materials for Solid Oxide Fuel Cells: A Review
,”
J. Solid State Electrochem.
,
14
(
7
), pp.
1125
1144
.
7.
Sun
,
Z.
,
Gopalan
,
S.
,
Pal
,
U. B.
, and
Basu
,
S. N.
,
2017
, “
Cu1.3Mn1.7O4 Spinel Coatings Deposited by Electrophoretic Deposition on Crofer 22 APU Substrates for Solid Oxide Fuel Cell Applications
,”
Surf. Coat. Technol.
,
323
, pp.
49
57
.
8.
Tan
,
K. H.
,
Rahman
,
H. A.
, and
Taib
,
H.
,
2019
, “
Coating Layer and Influence of Transition Metal for Ferritic Stainless Steel Interconnector Solid Oxide Fuel Cell: A Review
,”
Int. J. Hydrogen Energy
,
44
(
58
), pp.
30591
30605
.
9.
Shaigan
,
N.
,
Qu
,
W.
,
Ivey
,
D. G.
, and
Chen
,
W.
, “
A Review of Recent Progress in Coatings, Surface Modifications and Alloy Developments for Solid Oxide Fuel Cell Ferritic Stainless Steel Interconnects
,”
J. Power Sources
,
195
(
6
), pp.
1529
1542
.
10.
Zhu
,
Z.
,
Sugimoto
,
M.
,
Pal
,
U.
,
Gopalan
,
S.
, and
Basu
,
S.
,
2020
, “
Electrochemical Cleaning: An In-Situ Method to Reverse Chromium Poisoning in Solid Oxide Fuel Cell Cathodes
,”
J. Power Sources
,
471
, p.
228474
.
11.
Zhu
,
Z.
,
Sugimoto
,
M.
,
Pal
,
U.
,
Gopalan
,
S.
, and
Basu
,
S.
,
2020
, “
Multiple Cycle Chromium Poisoning and In-Situ Electrochemical Cleaning of LSM-Based Solid Oxide Fuel Cell Cathodes
,”
J. Power Sources Adv.
,
6
, p.
100037
.
12.
Paulson
,
S. C.
, and
Birss
,
V. I.
,
2004
, “
Chromium Poisoning of LSM-YSZ SOFC Cathodes
,”
J. Electrochem. Soc.
,
151
(
11
), p.
A1961
.
13.
Sugimoto
,
M.
,
2022
, “
Chromium Poisoning Mitigation in Solid Oxide Fuel Cell Air Electrodes: Mechanisms for Cr Deposition and Removal
,”
Dissertation
,
Boston University
,
Boston, MA
.
14.
Zhu
,
Z.
,
2022
, “
Mitigation of Chromium Poisoning in Solid Oxide Fuel Cell Cathodes
,”
Dissertation
,
Boston University
,
Boston, MA
.
15.
Backhaus-Ricoult
,
M.
,
Adib
,
K.
,
St.Clair
,
T.
,
Luerssen
,
B.
,
Gregoratti
,
L.
, and
Barinov
,
A.
,
2008
, “
In-Situ Study of Operating SOFC LSM/YSZ Cathodes Under Polarization by Photoelectron Microscopy
,”
Solid State Ionics
,
179
(
21–26
), pp.
891
895
.
16.
Huber
,
A. K.
,
Falk
,
M.
,
Rohnke
,
M.
,
Luerssen
,
B.
,
Amati
,
M.
,
Gregoratti
,
L.
,
Hesse
,
D.
, and
Janek
,
J.
,
2012
, “
In Situ Study of Activation and De-Activation of LSM Fuel Cell Cathodes—Electrochemistry and Surface Analysis of Thin-Film Electrodes
,”
J. Catal.
,
294
, pp.
79
88
.
17.
Norrman
,
K.
,
Hansen
,
K. V.
, and
Jacobsen
,
T.
,
2015
, “
Dynamic Behavior of Impurities and Native Components in Model LSM Microelectrodes on YSZ
,”
RSC Adv.
,
5
(
106
), pp.
87679
87693
.
18.
Nielsen
,
J.
, and
Mogensen
,
M.
,
2011
, “
SOFC LSM:YSZ Cathode Degradation Induced by Moisture: An Impedance Spectroscopy Study
,”
Solid State Ionics
,
189
(
1
), pp.
74
81
.
19.
Jiang
,
S. P.
,
Love
,
J. G.
,
Zhang
,
J. P.
,
Hoang
,
M.
,
Ramprakash
,
Y.
,
Hughes
,
A. E.
, and
Badwal
,
S. P. S.
,
1999
, “
Electrochemical Performance of LSM/Zirconia-Yttria Interface as a Function of A-Site Non-Stoichiometry and Cathodic Current Treatment
,”
Solid State Ionics
,
121
(
1
), pp.
1
10
.
20.
Milshtein
,
J. D.
,
Gergel
,
D. R.
,
Basu
,
S. N.
,
Pal
,
U. B.
, and
Gopalan
,
S.
,
2015
, “
Mixed Ionic Electronic Conducting Powder Bed for Grid Level Energy Storage and Release: A Study of Tungsten Oxide Reduction Kinetics
,”
Int. J. Hydrogen Energy
,
40
(
9
), pp.
3624
3632
.
21.
Shi
,
H.
,
Su
,
C.
,
Ran
,
R.
,
Cao
,
J.
, and
Shao
,
Z.
,
2020
, “
Electrolyte Materials for Intermediate-Temperature Solid Oxide Fuel Cells
,”
Prog. Nat. Sci. Mater. Int.
,
30
(
6
), pp.
764
774
.
22.
Jaiswal
,
A.
, and
Wachsman
,
E. D.
,
2006
, “
Direct Current Bias Studies on (Bi2O3)0.8(Er2O3)0.2 Electrolyte and Ag-(Bi2O3)0.8(Er2O3)0.2 Cermet Electrode
,”
Solid State Ionics
,
177
(
7–8
), pp.
677
685
.
23.
Bishop
,
S. R.
,
Duncan
,
K. L.
, and
Wachsman
,
E. D.
,
2009
, “
Defect Equilibria and Chemical Expansion in Non-Stoichiometric Undoped and Gadolinium-Doped Cerium Oxide
,”
Electrochim. Acta
,
54
(
5
), pp.
1436
1443
.
24.
Mogensen
,
M.
,
Sammes
,
N. M.
, and
Tompsett
,
G. A.
,
2000
, “
Physical, Chemical and Electrochemical Properties of Pure and Doped Ceria
,”
Solid State Ionics
,
129
(
1–4
), pp.
63
94
.
25.
Wang
,
S.
,
Inaba
,
H.
,
Tagawa
,
H.
,
Dokiya
,
M.
, and
Hashimoto
,
T.
,
1998
, “
Nonstoichiometry of Ce0.9Gd0.1O1.95-x
,”
Solid State Ionics
,
107
(
1–2
), pp.
73
79
.
26.
Al-Kuhaili
,
M. F.
,
2007
, “
Characterization of Thin Films Produced by the Thermal Evaporation of Silver Oxide
,”
J. Phys. D: Appl. Phys.
,
40
(
9
), pp.
2847
2853
.
27.
Djokić
,
S. S.
,
Burrell
,
R. E.
,
Le
,
N.
, and
Field
,
D. J.
,
2001
, “
An Electrochemical Analysis of Thin Silver Films Produced by Reactive Sputtering
,”
J. Electrochem. Soc.
,
148
(
3
), pp.
C191
C196
.
28.
Gao
,
X. Y.
,
Wang
,
S. Y.
,
Li
,
J.
,
Zheng
,
Y. X.
,
Zhang
,
R. J.
,
Zhou
,
P.
,
Yang
,
Y. M.
, and
Chen
,
L. Y.
,
2004
, “
Study of Structure and Optical Properties of Silver Oxide Films by Ellipsometry, XRD and XPS Methods
,”
Thin Solid Films
,
455–456
, pp.
438
442
.
29.
Finsterbusch
,
M.
,
Lussier
,
A.
,
Negusse
,
E.
,
Zhu
,
Z.
,
Smith
,
R. J.
,
Schaefer
,
J. A.
, and
Idzerda
,
Y. U.
,
2010
, “
Effect of Cr2O3 on the 18O Tracer Incorporation in SOFC Materials
,”
Solid State Ionics
,
181
(
13–14
), pp.
640
645
.
30.
He
,
S.
,
Chen
,
K.
,
Saunders
,
M.
,
Li
,
J.
,
Cui
,
C. Q.
, and
Jiang
,
S. P.
,
2017
, “
A FIB-STEM Study of La0.8Sr0.2MnO3 Cathode and Y2O3-ZrO2/Gd2O3-CeO2 Electrolyte Interfaces of Solid Oxide Fuel Cells
,”
J. Electrochem. Soc.
,
164
(
13
), pp.
F1437
F1447
.
You do not currently have access to this content.