Abstract

Unavoidable minor electric vehicle collisions can cause defects and deformations in lithium-ion batteries (LIBs). The safety of such defective batteries is crucial for ensuring the overall safety and stability of battery systems. However, the usability of a defective battery and the mechanisms underlying the damage remain unclear. In this study, we focus on the mechanical performance of defective batteries, safety thresholds, and the associated failure mechanisms. Initially, two typical defective cells are prepared by quasi-static loading using different indenters. The mechanical responses of these cells are then assessed via quasi-static flat compression. Finally, a mechanical failure criterion for the battery is proposed based on the thickness of the separator. The effects of defect area and defect angle on the performance of defective cells are also discussed. These results provide valuable insights for the safety assessment and management of defective lithium-ion batteries.

References

1.
Li
,
Z. H.
,
Khajepour
,
A.
, and
Song
,
J. C.
,
2019
, “
A Comprehensive Review of the Key Technologies for Pure Electric Vehicles
,”
Energy
,
182
, pp.
824
839
.
2.
Sun
,
X. L.
,
Li
,
Z. G.
,
Wang
,
X. L.
, and
Li
,
C. J.
,
2020
, “
Technology Development of Electric Vehicles: A Review
,”
Energies
,
13
(
1
), p.
90
.
3.
Barman
,
P.
,
Dutta
,
L.
,
Bordoloi
,
S.
,
Kalita
,
A.
,
Buragohain
,
P.
,
Bharali
,
S.
, and
Azzopardi
,
B.
,
2023
, “
Renewable Energy Integration With Electric Vehicle Technology: A Review of the Existing Smart Charging Approaches
,”
Renew. Sust. Energ. Rev.
,
183
, p.
113518
.
4.
Bourzac
,
K.
,
2015
, “
Batteries: 4 Big Questions
,”
Nature
,
526
(
7575
), pp.
S105
S105
.
5.
Lu
,
J.
,
Lee
,
Y. J.
,
Luo
,
X.
,
Lau
,
K. C.
,
Asadi
,
M.
,
Wang
,
H.-H.
,
Brombosz
,
S.
, et al
,
2016
, “
A Lithium-Oxygen Battery Based on Lithium Superoxide
,”
Nature
,
529
(
7586
), pp.
377
382
.
6.
Wang
,
C.-Y.
,
Zhang
,
G.
,
Ge
,
S.
,
Xu
,
T.
,
Ji
,
Y.
,
Yang
,
X.-G.
, and
Leng
,
Y.
,
2016
, “
Lithium-Ion Battery Structure That Self-Heats at Low Temperatures
,”
Nature
,
529
(
7587
), pp.
515
518
.
7.
Wen
,
J. W.
,
Yu
,
Y.
, and
Chen
,
C. H.
,
2012
, “
A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
,”
Mater. Express
,
2
(
3
), pp.
197
212
.
8.
Deng
,
J.
,
Bae
,
C.
,
Denlinger
,
A.
, and
Miller
,
T.
,
2020
, “
Electric Vehicles Batteries: Requirements and Challenges
,”
Joule
,
4
(
3
), pp.
511
515
.
9.
Liu
,
B. H.
,
Jia
,
Y. K.
,
Yuan
,
C. H.
,
Wang
,
L. B.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
10.
Finegan
,
D. P.
,
Darcy
,
E.
,
Keyser
,
M.
,
Tjaden
,
B.
,
Heenan
,
T. M. M.
,
Jervis
,
R.
,
Bailey
,
J. J.
, et al
,
2017
, “
Characterising Thermal Runaway Within Lithium-Ion Cells by Inducing and Monitoring Internal Short Circuits
,”
Energy Environ. Sci.
,
10
(
6
), pp.
1377
1388
.
11.
Deng
,
J.
,
Bae
,
C.
,
Marcicki
,
J.
,
Masias
,
A.
, and
Miller
,
T.
,
2018
, “
Safety Modelling and Testing of Lithium-Ion Batteries in Electrified Vehicles
,”
Nat. Energy
,
3
(
4
), pp.
261
266
.
12.
Xu
,
J.
,
Liu
,
B. H.
, and
Hu
,
D. Y.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), p.
21829
.
13.
Li
,
W.
,
Xia
,
Y.
,
Chen
,
G. H.
, and
Sahraei
,
E.
,
2018
, “
Comparative Study of Mechanical-Electrical-Thermal Responses of Pouch, Cylindrical, and Prismatic Lithium-Ion Cells Under Mechanical Abuse
,”
Sci. China Technol. Sci.
,
61
(
10
), pp.
1472
1482
.
14.
Luo
,
H. L.
,
Xia
,
Y.
, and
Zhou
,
Q.
,
2017
, “
Mechanical Damage in a Lithium-Ion Pouch Cell Under Indentation Loads
,”
J. Power Sources
,
357
, pp.
61
70
.
15.
Keshavarzi
,
M. M.
,
Gilaki
,
M.
, and
Sahraei
,
E.
,
2022
, “
Characterization of In-Situ Material Properties of Pouch Lithium-Ion Batteries in Tension From Three-Point Bending Tests
,”
Int. J. Mech. Sci.
,
219
, p.
107090
.
16.
Zhao
,
W.
,
Luo
,
G.
, and
Wang
,
C. Y.
,
2015
, “
Modeling Nail Penetration Process in Large-Format Li-Ion Cells
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
A207
A217
.
17.
Liu
,
B. H.
,
Yin
,
S.
, and
Xu
,
J.
,
2016
, “
Integrated Computation Model of Lithium-Ion Battery Subject to Nail Penetration
,”
Appl. Energy
,
183
, pp.
278
289
.
18.
Wang
,
L.
,
Chen
,
J.
,
Li
,
J.
,
Li
,
B.
, and
Wang
,
T.
,
2022
, “
A Novel Anisotropic Model for Multi-stage Failure Threshold of Lithium-Ion Battery Subjected to Impact Loading
,”
Int. J. Mech. Sci.
,
236
, p.
107757
.
19.
Yu
,
D.
,
Ren
,
D.
,
Dai
,
K.
,
Zhang
,
H.
,
Zhang
,
J.
,
Yang
,
B.
,
Ma
,
S.
,
Wang
,
X.
, and
You
,
Z.
,
2021
, “
Failure Mechanism and Predictive Model of Lithium-Ion Batteries Under Extremely High Transient Impact
,”
J. Energy Storage
,
43
, p.
103191
.
20.
Chai
,
Z. X.
,
Li
,
J. Q.
,
Liu
,
Z. M.
,
Liu
,
Z. N.
, and
Jin
,
X.
,
2024
, “
Experimental Analysis and Safety Assessment of Thermal Runaway Behavior in Lithium Iron Phosphate Batteries Under Mechanical Abuse
,”
Sci. Rep.
,
14
(
1
), p.
8673
.
21.
Li
,
Y. D.
,
Wang
,
W. W.
,
Lin
,
C.
, and
Zuo
,
F. H.
,
2021
, “
High-Efficiency Multiphysics Coupling Framework for Cylindrical Lithium-Ion Battery Under Mechanical Abuse
,”
J. Clean. Prod.
,
286
, p.
125451
.
22.
Li
,
H.
,
Zhou
,
D.
,
Zhang
,
M.
,
Liu
,
B.
, and
Zhang
,
C.
,
2023
, “
Multi-field Interpretation of Internal Short Circuit and Thermal Runaway Behavior for Lithium-Ion Batteries Under Mechanical Abuse
,”
Energy
,
263
, p.
126027
.
23.
Li
,
Y. D.
,
Wang
,
W. W.
,
Lin
,
C.
, and
Zuo
,
F. H.
,
2021
, “
Safety Modeling and Protection for Lithium-Ion Batteries Based on Artificial Neural Networks Method Under Mechanical Abuse
,”
Sci. China Technol. Sci.
,
64
(
11
), pp.
2373
2388
.
24.
Jia
,
Y. K.
,
Gao
,
X.
,
Ma
,
L.
, and
Xu
,
J.
,
2023
, “
Comprehensive Battery Safety Risk Evaluation: Aged Cells Versus Fresh Cells Upon Mechanical Abusive Loadings
,”
Adv. Energy Mater.
,
13
(
24
), p.
2300368
.
25.
Liu
,
J.
,
Duan
,
Q.
,
Qi
,
K.
,
Liu
,
Y.
,
Sun
,
J.
,
Wang
,
Z.
, and
Wang
,
Q.
,
2022
, “
Capacity Fading Mechanisms and State of Health Prediction of Commercial Lithium-Ion Battery in Total Lifespan
,”
J. Energy Storage
,
46
, p.
103910
.
26.
Thangavel
,
N. K.
,
Mundhe
,
S.
,
Islam
,
M. M.
,
Newaz
,
G.
, and
Arava
,
L. M. R.
,
2020
, “
Probing of Internal Short Circuit in Lithium-Ion Pouch Cells by Electrochemical Impedance Spectroscopy Under Mechanical Abusive Conditions
,”
J. Electrochem. Soc.
,
167
(
16
), p.
160553
.
27.
Yuan
,
Q.
,
Chen
,
X. P.
,
Meng
,
K. P.
,
Wang
,
P. X.
,
Tang
,
L.
,
Wang
,
T.
,
Cao
,
J.
, and
Wu
,
Y. B.
,
2022
, “
Research on Mechanical Simulation Model and Working Safety Boundary of Large-Capacity Prismatic Lithium-Ion Battery Based on Experiment
,”
J. Electrochem. Energy
,
19
(
3
), p.
030911
.
28.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium ion Battery Cells
,”
J. Power Sources
,
214
, pp.
377
385
.
29.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell Upon Crushing
,”
Eng. Fail. Anal.
,
53
, pp.
97
110
.
30.
Ji
,
H.
,
Chen
,
X.
,
Chen
,
S.
,
Wang
,
Q.
,
Yuan
,
Q.
,
Wang
,
T.
,
Papovic
,
S.
,
Raleva
,
K.
,
Song
,
D.
, and
Lin
,
X.
,
2024
, “
A Mechanism Computational Model of Internal Short Circuit Behaviors for Lithium-Ion Batteries Upon Mechanical Abusive Loading
,”
J. Energy Storage
,
82
, p.
110570
.
31.
Liu
,
B. H.
,
Duan
,
X. D.
,
Yuan
,
C. H.
,
Wang
,
L. B.
,
Li
,
J. N.
,
Finegan
,
D. P.
,
Feng
,
B.
, and
Xu
,
J.
,
2021
, “
Quantifying and Modeling of Stress-Driven Short-Circuits in Lithium-Ion Batteries in Electrified Vehicles
,”
J. Mater. Chem. A
,
9
(
11
), pp.
7102
7113
.
32.
Wang
,
L. B.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
.
33.
Liu
,
B. H.
,
Zhao
,
H.
,
Yu
,
H. L.
,
Li
,
J.
, and
Xu
,
J.
,
2017
, “
Multiphysics Computational Framework for Cylindrical Lithium-Ion Batteries Under Mechanical Abusive Loading
,”
Electrochim. Acta
,
256
, pp.
172
184
.
34.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague
,
M. A.
, and
Pesaran
,
A. A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
.
35.
Yuan
,
C. H.
,
Gao
,
X.
,
Wong
,
H. K.
,
Feng
,
B.
, and
Xu
,
J.
,
2019
, “
A Multiphysics Computational Framework for Cylindrical Battery Behavior Upon Mechanical Loading Based on LS-DYNA
,”
J. Electrochem. Soc.
,
166
(
6
), pp.
A1160
A1169
.
36.
Shuai
,
W. Q.
,
Li
,
E. Y.
, and
Wang
,
H.
,
2020
, “
An Equivalent Circuit Model of a Deformed Li-Ion Battery With Parameter Identification
,”
Int. J. Energy Res.
,
44
(
11
), pp.
8372
8387
.
37.
Wang
,
G. W.
,
Wu
,
J. J.
,
Zheng
,
Z. J.
,
Niu
,
L. E.
,
Pan
,
L.
, and
Wang
,
B.
,
2022
, “
Effect of Deformation on Safety and Capacity of Li-Ion Batteries
,”
Batteries
,
8
(
11
), p.
235
.
38.
Liu
,
J.
,
Ma
,
Z.
,
Guo
,
Z.
,
Zhao
,
W.
,
Wang
,
S.
,
Zhao
,
H.
, and
Ren
,
L.
,
2024
, “
Experimental Investigation on Mechanical-Electrochemical Coupling Properties of Cylindrical Lithium-Ion Batteries
,”
Energy
,
293
, p.
130536
.
39.
Jia
,
Y. K.
,
Liu
,
B. H.
,
Hong
,
Z. G.
,
Yin
,
S.
,
Finegan
,
D. P.
, and
Xu
,
J.
,
2020
, “
Safety Issues of Defective Lithium-Ion Batteries: Identification and Risk Evaluation
,”
J. Mater. Chem. A
,
8
(
25
), pp.
12472
12484
.
40.
Chen
,
X.
,
Yuan
,
Q.
,
Wang
,
T.
,
Ji
,
H.
,
Ji
,
Y.
,
Li
,
L.
, and
Liu
,
Y.
,
2020
, “
Experimental Study on the Dynamic Behavior of Prismatic Lithium-Ion Battery Upon Repeated Impact
,”
Eng. Fail. Anal.
,
115
, p.
104667
.
41.
Santhanagopalan
,
S.
,
Ramadass
,
P.
, and
Zhang
,
J.
,
2009
, “
Analysis of Internal Short-Circuit in a Lithium Ion Cell
,”
J. Power Sources
,
194
(
1
), pp.
550
557
.
42.
Yuan
,
C.
,
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Generalized Separator Failure Criteria for Internal Short Circuit of Lithium-Ion Battery
,”
J. Power Sources
,
467
, p.
228360
.
You do not currently have access to this content.