Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Prismatic lithium-ion batteries (LIBs) are becoming the most prevalent battery type in electric vehicles, and their mechanical safety is garnering increased attention. Understanding the mechanical response and internal short circuit (ISC) of prismatic LIBs during dynamic impact is important for enhancing the safety and reliability of electric vehicles. Thanks to the pioneer's works on the cylindrical and pouch LIB, prismatic LIB can draw on relevant experimental and numerical modeling methods. However, there is still a lack of research on the dynamic effects of prismatic LIB in various loading directions. To address this disparity, the current research utilizes quasi-static and dynamic impact experiments on prismatic LIBs as a foundation. First, the mechanical response of a sizable prismatic LIB under quasi-static conditions and the dynamic effects are examined when subjected to mechanical abuse from various loading directions. Second, an anisotropic finite element model that considers dynamic strain rates are developed, enabling it to accurately represent the mechanical response to both quasi-static and dynamic impact loads. At last, we performed an analysis of ISC occurring under dynamic loading conditions combining the experimental and simulated results. The experimental results as well as the established model can provide reference for the safe design, application, and analysis of prismatic LIBs.

References

1.
Huang
,
L.
,
Zhang
,
Z.
,
Wang
,
Z.
,
Zhang
,
L.
,
Zhu
,
X.
, and
Dorrell
,
D. D.
,
2019
, “
Thermal Runaway Behavior During Overcharge for Large-Format Lithium-Ion Batteries With Different Packaging Patterns
,”
J. Energy Storage
,
25
, p.
100811
.
2.
Feng
,
X.
,
Xu
,
C.
,
He
,
X.
,
Wang
,
L.
,
Zhang
,
G.
, and
Ouyang
,
M.
,
2018
, “
Mechanisms for the Evolution of Cell Variations Within a LiNixCoyMnzO2/Graphite Lithium-Ion Battery Pack Caused by Temperature Non-Uniformity
,”
J. Cleaner Prod.
,
205
, pp.
447
462
.
3.
Feng
,
X.
,
Ouyang
,
M.
,
Liu
,
X.
,
Lu
,
L.
,
Xia
,
Y.
, and
He
,
X.
,
2018
, “
Thermal Runaway Mechanism of Lithium Ion Battery for Electric Vehicles: A Review
,”
Energy Storage Mater.
,
10
, pp.
246
267
.
4.
Liu
,
B.
,
Jia
,
Y.
,
Yuan
,
C.
,
Wang
,
L.
,
Gao
,
X.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Safety Issues and Mechanisms of Lithium-Ion Battery Cell Upon Mechanical Abusive Loading: A Review
,”
Energy Storage Mater.
,
24
, pp.
85
112
.
5.
Liu B
,
H.
,
Liu
,
X.
,
Wang H
,
C.
,
Li
,
J.
, and
Xu
,
J.
,
2024
, “
A Hierarchical Modeling Framework for Electrochemical Behaviors in Lithium-Ion Batteries With Detailed Structures
,”
Energy Environ. Mater.
,
7
(
5
), p.
e12711
.
6.
Cao Y
,
Z.
,
Wang H
,
C.
,
Liu B
,
H.
, and
Xu
,
J.
,
2023
, “
Modeling, Validation, and Analysis of Swelling Behaviors of Lithium-Ion Batteries
,”
J. Energy Storage
,
74
, p.
109499
.
7.
Li
,
H.
,
Zhou
,
D.
,
Cui
,
Z.
,
Li
,
P.
, and
Zhang
,
C.
,
2024
, “
Rate-Dependent Damage and Failure Behavior of Lithium-Ion Battery Electrodes
,”
Eng. Fract. Mech.
,
303
, p.
110143
.
8.
Smith
,
K.
,
Kim
,
G.-H.
,
Darcy
,
E.
, and
Pesaran
,
A.
,
2010
, “
Thermal/Electrical Modeling for Abuse-Tolerant Design of Lithium Ion Modules
,”
Int. J. Energy Res.
,
34
, pp.
204
215
.
9.
Greve
,
L.
, and
Fehrenbach
,
C.
,
2012
, “
Mechanical Testing and Macro-Mechanical Finite Element Simulation of the Deformation, Fracture, and Short Circuit Initiation of Cylindrical Lithium Ion Battery Cells
,”
J. Power Sources
,
214
, pp.
377
385
.
10.
Sahraei
,
E.
,
Campbell
,
J.
, and
Wierzbicki
,
T.
,
2012
, “
Modeling and Short Circuit Detection of 18650 Li-Ion Cells Under Mechanical Abuse Conditions
,”
J. Power Sources
,
220
, pp.
360
372
.
11.
Sahraei
,
E.
,
Hill
,
R.
, and
Wierzbicki
,
T.
,
2012
, “
Calibration and Finite Element Simulation of Pouch Lithium-Ion Batteries for Mechanical Integrity
,”
J. Power Sources
,
201
, pp.
307
321
.
12.
Wen
,
J.
,
Yu
,
Y.
, and
Chen
,
C.
,
2012
, “
A Review on Lithium-Ion Batteries Safety Issues: Existing Problems and Possible Solutions
,”
Mater. Express
,
2
(
3
), pp.
197
212
.
13.
Ali M
,
Y.
,
Lai
,
W.-J.
, and
Pan
,
J.
,
2013
, “
Computational Models for Simulations of Lithium-Ion Battery Cells Under Constrained Compression Tests
,”
J. Power Sources
,
242
, pp.
325
340
.
14.
Wierzbicki
,
T.
, and
Sahraei
,
E.
,
2013
, “
Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
J. Power Sources
,
241
, pp.
467
476
.
15.
Ali M
,
Y.
,
Lai
,
W.-J.
, and
Pan
,
J.
,
2015
, “
Computational Models for Simulation of a Lithium-Ion Battery Module Specimen Under Punch Indentation
,”
J. Power Sources
,
273
, pp.
448
459
.
16.
Zhang
,
C.
,
Santhanagopalan
,
S.
,
Sprague M
,
A.
, and
Pesaran A
,
A.
,
2015
, “
Coupled Mechanical-Electrical-Thermal Modeling for Short-Circuit Prediction in a Lithium-Ion Cell Under Mechanical Abuse
,”
J. Power Sources
,
290
, pp.
102
113
.
17.
Feng
,
X.
,
Lu
,
L.
,
Ouyang
,
M.
,
Li
,
J.
, and
He
,
X.
,
2016
, “
A 3D Thermal Runaway Propagation Model for a Large Format Lithium ion Battery Module
,”
Energy
,
115
, pp.
194
208
.
18.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
X.
, and
Hu
,
D.
,
2016
, “
Computational Model of 18650 Lithium-Ion Battery With Coupled Strain Rate and SOC Dependencies
,”
Appl. Energy
,
172
, pp.
180
189
.
19.
Liu
,
Y.
,
Mao
,
Y.
,
Wang H
,
C.
,
Pan Y
,
J.
, and
Liu B
,
H.
,
2023
, “
Internal Short Circuit of Lithium Metal Batteries Under Mechanical Abuse
,”
Int. J. Mech. Sci.
,
245
, p.
108130
.
20.
Kermani
,
G.
, and
Sahraei
,
E.
,
2017
, “
Review: Characterization and Modeling of the Mechanical Properties of Lithium-Ion Batteries
,”
Energies
,
10
(
11
), p.
1730
.
21.
Wang
,
W.
,
Yang
,
S.
, and
Lin
,
C.
,
2017
, “
Clay-Like Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells
,”
Appl. Energy
,
196
, pp.
249
258
.
22.
Wang
,
L.
,
Yin
,
S.
, and
Xu
,
J.
,
2019
, “
A Detailed Computational Model for Cylindrical Lithium-Ion Batteries Under Mechanical Loading: From Cell Deformation to Short-Circuit Onset
,”
J. Power Sources
,
413
, pp.
284
292
.
23.
Pan
,
Z.
,
Li
,
W.
, and
Xia
,
Y.
,
2020
, “
Experiments and 3D Detailed Modeling for a Pouch Battery Cell Under Impact Loading
,”
J. Energy Storage
,
27
, p.
101016
.
24.
Kulkarni S
,
S.
,
Vysoudil
,
F.
, and
Vietor
,
T.
,
2021
, “
Evaluation of Modelling and Simulation Strategies to Investigate the Mechanical Integrity of a Battery Cell Using Finite Element Methods
,”
Energies
,
14
(
11
), p.
2976
.
25.
Wang
,
H.
,
Pan
,
Y.
,
Liu
,
X.
,
Cao
,
Y.
,
Liu
,
Y.
,
Zhang
,
X.
,
Mao
,
Y.
, and
Liu
,
B.
,
2022
, “
Criteria and Design Guidance for Lithium-Ion Battery Safety From a Material Perspective
,”
J. Mater. Chem. A
,
10
(
12
), pp.
6538
6550
.
26.
Lai
,
W.-J.
,
Ali M
,
Y.
, and
Pan
,
J.
,
2014
, “
Mechanical Behavior of Representative Volume Elements of Lithium-Ion Battery Cells Under Compressive Loading Conditions
,”
J. Power Sources
,
245
, pp.
609
623
.
27.
Jia
,
Y.
,
Gao
,
X.
,
Mouillet
,
J.-B.
,
Terrier
,
J.-M.
,
Lombard
,
P.
, and
Xu
,
J.
,
2021
, “
Effective Thermo-Electro-Mechanical Modeling Framework of Lithium-Ion Batteries Based on a Representative Volume Element Approach
,”
J. Energy Storage
,
33
, p.
102090
.
28.
Xu
,
J.
,
Liu
,
B.
,
Wang
,
L.
, and
Shang
,
S.
,
2015
, “
Dynamic Mechanical Integrity of Cylindrical Lithium-Ion Battery Cell upon Crushing
,”
Eng. Failure Anal.
,
53
, pp.
97
110
.
29.
Wang
,
T.
,
Hu R
,
F.
,
Chen X
,
P.
,
Wu Y
,
B.
,
Raleva
,
K.
,
Ji H
,
B.
,
Li
,
L.
, et al
,
2021
, “
Investigation of the Mechanical Integrity of Prismatic Li-Ion Batteries Under Multi-Position Indentation
,”
ASME J. Electrochem. Energy Convers. Storage
,
18
(
2
), p.
020908
.
30.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
,
Yuan
,
Q.
, and
Li
,
L.
,
2020
, “
Dynamic Behavior and Modeling of Prismatic Lithium-Ion Battery
,”
Int. J. Energy Res.
,
44
(
4
), pp.
2984
2997
.
31.
Xing
,
B.
,
Xiao
,
F.
,
Korogi
,
Y.
,
Ishimaru
,
T.
, and
Xia
,
Y.
,
2021
, “
Direction-Dependent Mechanical-Electrical-Thermal Responses of Large-Format Prismatic Li-Ion Battery Under Mechanical Abuse
,”
J. Energy Storage
,
43
, p.
103270
.
32.
Zou
,
Z.
,
Xu
,
F.
,
Tian
,
H.
, and
Niu
,
X.
,
2023
, “
Testing and Impact Modeling of Lithium-Ion Prismatic Battery Under Quasi-Static and Dynamic Mechanical Abuse
,”
J. Energy Storage
,
68
, p.
107639
.
33.
Xu
,
J.
,
Liu B
,
H.
, and
Hu D
,
Y.
,
2016
, “
State of Charge Dependent Mechanical Integrity Behavior of 18650 Lithium-Ion Batteries
,”
Sci. Rep.
,
6
(
1
), p.
21829
.
34.
Kisters
,
T.
,
Sahraei
,
E.
, and
Wierzbicki
,
T.
,
2017
, “
Dynamic Impact Tests on Lithium-Ion Cells
,”
Int. J. Impact Eng.
,
108
, pp.
205
216
.
35.
Zhu
,
L.
,
Ge
,
Y.
,
Wang
,
L.
,
Zhang
,
L.
,
Liu
,
Y.
, and
Xia
,
Y.
,
2021
, “
Mechanical Anisotropy and Strain-Rate Dependency of a Large Format Lithium-Ion Battery Cell: Experiments and Simulations
,”
SAE Tech. Pap.
,
01
, p.
0755
.
36.
Chen
,
X.
,
Wang
,
T.
,
Zhang
,
Y.
,
Ji
,
H.
,
Ji
,
Y.
, and
Yuan
,
Q.
,
2019
, “
Dynamic Mechanical Behavior of Prismatic Lithium-ion Battery Upon Impact
,”
Int. J. Energy Res.
,
43
(
13
), pp.
7421
7432
.
37.
Wang L
,
B.
,
Yin
,
S.
,
Zhang
,
C.
,
Huan
,
Y.
, and
Xu
,
J.
,
2018
, “
Mechanical Characterization and Modeling for Anodes and Cathodes in Lithium-Ion Batteries
,”
J. Power Sources
,
392
, pp.
265
273
.
38.
Kalnaus
,
S.
,
Wang Y
,
L.
, and
Turner J
,
A.
,
2017
, “
Mechanical Behavior and Failure Mechanisms of Li-Ion Battery Separators
,”
J. Power Sources
,
348
, pp.
255
263
.
39.
Gor G
,
Y.
,
Cannarella
,
J.
,
Prévost J
,
H.
, and
Arnold C
,
B.
,
2014
, “
A Model for the Behavior of Battery Separators in Compression at Different Strain/Charge Rates
,”
J. Electrochem. Soc.
,
161
(
11
), pp.
F3065
F3071
.
40.
Kisters
,
T.
,
Keshavarzi
,
M.
,
Kuder
,
J.
, and
Sahraei
,
E.
,
2021
, “
Effects of Electrolyte, Thickness, and Casing Stiffness on the Dynamic Response of Lithium-Ion Battery Cells
,”
Energy Rep.
,
7
, pp.
6451
6461
.
41.
Zhu J
,
E.
,
Luo H
,
L.
,
Li
,
W.
,
Gao
,
T.
,
Xia
,
Y.
, and
Wierzbicki
,
T.
,
2019
, “
Mechanism of Strengthening of Battery Resistance Under Dynamic Loading
,”
Int. J. Impact Eng.
,
131
, pp.
78
84
.
42.
Xu
,
J.
,
Wang L
,
B.
,
Guan
,
J.
, and
Yin
,
S.
,
2016
, “
Coupled Effect of Strain Rate and Solvent on Dynamic Mechanical Behaviors of Separators in Lithium Ion Batteries
,”
Mater. Des.
,
95
, pp.
319
328
.
43.
Wang L
,
B.
,
Duan X
,
D.
,
Liu B
,
H.
,
Li Q
,
M.
,
Yin
,
S.
, and
Xu
,
J.
,
2020
, “
Deformation and Failure Behaviors of Anode in Lithium-Ion Batteries: Model and Mechanism
,”
J. Power Sources
,
448
, p.
227468
.
44.
Wang
,
L.
,
Yin
,
S.
,
Yu
,
Z.
,
Wang
,
Y.
,
Yue T
,
X.
,
Zhao
,
J.
,
Xie
,
Z.
,
Li
,
Y.
, and
Xu
,
J.
,
2018
, “
Unlocking the Significant Role of Shell Material for Lithium-Ion Battery Safety
,”
Mater. Des.
,
160
, pp.
601
610
.
45.
Zhang X
,
W.
,
Sahraei
,
E.
, and
Wang
,
K.
,
2016
, “
Li-Ion Battery Separators, Mechanical Integrity and Failure Mechanisms Leading to Soft and Hard Internal Shorts
,”
Sci. Rep.
,
6
(
1
), p.
32578
.
46.
Jia Y
,
K.
,
Yin
,
S.
,
Liu B
,
H.
,
Zhao
,
H.
,
Yu H
,
L.
,
Li
,
J.
, and
Xu
,
J.
,
2019
, “
Unlocking the Coupling Mechanical-Electrochemical Behavior of Lithium-Ion Battery Upon Dynamic Mechanical Loading
,”
Energy
,
166
, pp.
951
960
.
You do not currently have access to this content.