Abstract

One of the primary challenges in electrocatalysis for the hydrogen evolution reaction (HER) lies in the development of highly efficient catalysts suitable in acidic environments. Tungsten carbide-based materials have long been proposed as potential substitutes for Pt due to their “Pt-like” electronic properties in the HER process. However, tungsten carbide still falls short of the performance exhibited by commercial precious-metal catalysts. Herein, PtRuW/WC was prepared by a microwave heating method and acted as a HER electrocatalyst. The microwave method not only enhances the diffraction peaks of the substrate tungsten carbide but also facilitates the growth of metal ions at specific sites. The PtRuW/WC catalyst demonstrates outstanding performance in acidic HER, characterized by a minimal overpotential of 40.7 mV at 10 mA/cm210). Furthermore, it exhibits exceptional stability in acidic solutions, showing no substantial degradation during 20 h at 1000 mA/cm2. The catalyst-assembled polymer electrolyte membrane (PEM) electrolytic water electrode further proves that PtRuW/WC has excellent electrolytic water performance and makes some efforts for the development of commercial PEM electrolytic water.

References

1.
Murthy
,
A. P.
,
Madhavan
,
J.
, and
Murugan
,
K.
,
2018
, “
Recent Advances in Hydrogen Evolution Reaction Catalysts on Carhonlcarbon-Based Supports in Acid Media
,”
J. Power Sources
,
398
, pp.
9
26
.
2.
Asefa
,
T.
,
2016
, “
Metal-Free and Noble Metal-Free Heteroatom-Doped Nanostructured Carbons as Prospective Sustainable Electrocatalysts
,”
Acc. Chem. Res.
,
49
(
9
), pp.
1873
1883
.
3.
Zou
,
X.
, and
Zhang
,
Y.
,
2015
, “
Noble Metal-Free Hydrogen Evolution Catalysts for Water Splitting
,”
Chem. Soc. Rev
,
44
(
15
), pp.
5148
5180
.
4.
Singh
,
S.
, and
Ru
,
J.
,
2022
, “
Accessibility, Affordability, and Efficiency of Clean Energy: A Review and Research Agenda
,”
Environ. Sci. Pollut. Res.
,
29
(
13
), pp.
18333
18347
.
5.
Lee
,
J. E.
,
Jeon
,
K.-J.
,
Show
,
P. L.
,
Lee
,
I. H.
,
Jung
,
S.-C.
,
Choi
,
Y. J.
,
Rhee
,
G. H.
,
Lin
,
K.-Y. A.
, and
Park
,
Y.-K.
,
2022
, “
Mini Review on H2 Production From Electrochemical Water Splitting According to Special Nanostructured Morphology of Electrocatalysts
,”
Fuel
,
308
, p.
122048
.
6.
Cao
,
S. W.
, and
Yu
,
J. G.
,
2014
, “
g-C3N4-Based Photocatalysts for Hydrogen Generation
,”
J. Phys. Chem. Lett.
,
5
(
12
), pp.
2101
2107
.
7.
Zhu
,
J.
,
Hu
,
L.
,
Zhao
,
P.
,
Lee
,
L. Y. S.
, and
Wong
,
K.-Y.
,
2019
, “
Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles
,”
Chem. Rev.
,
120
(
2
), pp.
851
918
.
8.
Yu
,
Z. Y.
,
Duan
,
Y.
,
Feng
,
X. Y.
,
Yu
,
X.
,
Gao
,
M. R.
, and
Yu
,
S. H.
,
2021
, “
Clean and Affordable Hydrogen Fuel From Alkaline Water Splitting: Past, Recent Progress, and Future Prospects
,”
Adv. Mater.
,
33
(
31
), p.
2007100
.
9.
Zhang
,
Z.
,
Wu
,
X.
,
Kou
,
Z.
,
Song
,
N.
,
Nie
,
G.
,
Wang
,
C.
,
Verpoort
,
F.
, and
Mu
,
S.
,
2022
, “
Rational Design of Electrospun Nanofiber-Typed Electrocatalysts for Water Splitting: A Review
,”
Chem. Eng. J.
,
428
, p.
131133
.
10.
Tian
,
J.
,
Liu
,
Q.
,
Cheng
,
N.
,
Asiri
,
A. M.
, and
Sun
,
X.
,
2014
, “
Self-supported Cu3P Nanowire Arrays as an Integrated High-Performance Three-Dimensional Cathode for Generating Hydrogen From Water
,”
Angew. Chem. Int. Ed.
,
53
(
36
), pp.
9577
9581
.
11.
Yang
,
W.
, and
Chen
,
S.
,
2020
, “
Recent Progress in Electrode Fabrication for Electrocatalytic Hydrogen Evolution Reaction: A Mini Review
,”
Chem. Eng. J.
,
393
, p.
124726
.
12.
Zhou
,
H.
,
Wang
,
Y.
,
He
,
R.
,
Yu
,
F.
,
Sun
,
J.
,
Wang
,
F.
,
Lan
,
Y.
,
Ren
,
Z.
, and
Chen
,
S.
,
2016
, “
One-Step Synthesis of Self-supported Porous NiSe2/Ni Film Hybrid Foam: An Efficient 3d Electrode Synthesis of Self-sorted Porous for Hydrogen Evolution Reaction
,”
Nano Energy
,
20
, pp.
29
36
.
13.
Abdalla
,
A. M.
,
Hossain
,
S.
,
Nisfindy
,
O. B.
,
Azad
,
A. T.
,
Dawood
,
M.
, and
Azad
,
A. K.
,
2022
, “
Hydrogen Production, Storage, Transportation and Key Challenges With Applications: A Review
,”
J. Environ. Manage.
,
302
, p.
113963
.
14.
Russell
,
J. H.
,
Nuttall
,
L. J.
, and
Fickett
,
A. P.
,
1973
, “
Hydrogen Generation by Solid Polymer Electrolyte Water Electrolysis
,”
Hydrogen Energy
,
18
, pp.
24
40
.
15.
Jeon
,
M. K
,
Lee
,
K. R
,
Lee
,
W. S
,
Daimon
,
H
,
Nakahara
,
A.
, and
Woo
,
S. I.
,
2008
, “
Investigation of Pt/WC/C Catalyst for Methanol Electro-Oxidation and Oxygen Electro-Reduction
J. Power Sources
,
185
(
2
), pp.
927
931
.
16.
Hu
,
H.
,
Wu
,
M.
,
Wei
,
Z.
,
Song
,
S.
, and
Shen
,
P. K.
,
2007
, “
Pt-WC/C as a Cathode Electrocatalyst for Hydrogen Production by Methanol Electrolysis
,”
J. Power Sources
,
166
(
2
), pp.
458
461
.
17.
Emin
,
S.
,
De Respinis
,
M.
,
Fanetti
,
M.
,
Smith
,
W.
,
Valant
,
M.
, and
Dam
,
B.
,
2015
, “
A Simple Route for Preparation of Textured WO3 Thin Films From Colloidal W Nanoparticles and Their Photoelectrochemical Water Splitting Properties
,”
Applied Catalysis B: Environmental
,
166
(
1
), pp.
406
412
.
18.
Danaee
,
I.
,
Jafarian
,
M.
,
Forouzandeh
,
F.
,
Gobal
,
F.
, and
Mahjani
,
M.
,
2008
, “
Electrocatalytic Oxidation of Methanol on Ni and NiCu Alloy Modified Glassy Carbon Electrode
,”
Int. J. Hydrogen Energy
,
33
(
16
), pp.
4367
4376
.
19.
Jin
,
G.-P.
,
Ding
,
Y.-F.
, and
Zheng
,
P.-P.
,
2007
, “
Electrodeposition of Nickel Nanoparticles on Functional MWCNT Surfaces for Ethanol Oxidation
,”
J. Power Sources
,
166
(
1
), pp.
80
86
.
20.
Ji
,
N.
,
Zhang
,
T.
,
Zheng
,
M.
,
Wang
,
A.
,
Wang
,
H.
,
Wang
,
X.
, and
Chen
,
J. G.
,
2008
, “
Direct Catalytic Conversion of Cellulose Into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts
,”
Angew. Chem.
,
120
(
44
), pp.
8638
8641
.
21.
Ji
,
N.
,
Zhang
,
T.
,
Zheng
,
M.
,
Wang
,
A.
,
Wang
,
H.
,
Wang
,
X.
,
Chen
,
J. G.
, and
Ianovskii
,
M.
,
1961
, “
Dehydrogenation of Cyclohezane on Certain Carbides, Borides and Silicates
,”
Doklady Akademii Nauk SSSR
,
140
, pp.
863
869
.
22.
Gunter
,
S. K.
,
1996
, “
Sintering and Related Phenomena
,”
Catalysis
,
69
(
4
), pp.
223
231
.
23.
Ribeiro
,
F. H.
,
Dalla Dalla
,
R. A.
,
Guskey
,
G. J.
, and
Boudart
,
M.
,
1991
, “
Preparation and Surface Composition of Tungsten Carbide Powders With High Specific Surface Area
,”
Chem. Mater.
,
3
(
5
), pp.
805
812
.
24.
Ciszewski
,
A.
, and
Milczarek
,
G.
,
1997
, “
Glassy Carbon Electrode Modified by Conductive, Polymeric Nickel (II) Porphyrin Complex as a 3D Homogeneous Catalytic System for Methanol Oxidation in Basic Media
,”
J. Electroanal. Chem.
,
426
(
12
), pp.
125
130
.
25.
Yan
,
Y.
,
Zhang
,
L.
,
Qi
,
X.
,
Song
,
H.
,
Wang
,
J.-Y.
,
Zhang
,
H.
, and
Wang
,
X.
,
2012
, “
Template-Free Pseudomorphic Synthesis of Tungsten Carbide Nanorods
,”
Small
,
8
(
21
), pp.
3350
3356
.
26.
Hu
,
F.
,
Cui
,
G.
,
Wei
,
Z.
, and
Shen
,
P. K.
,
2008
, “
Improved Kinetics of Ethanol Oxidation on Pd Catalysts Supported on Tungsten Carbides/Carbon Nanotubes
,”
Electrochem. Commun.
,
10
(
9
), pp.
1303
1306
.
27.
Emin
,
S.
,
Altinkaya
,
C.
,
Semerci
,
A.
,
Okuyucu
,
H.
,
Yildiz
,
A.
, and
Stefanov
,
P.
,
2018
, “
Tungsten Carbide Electrocatalysts Prepared From Metallic Tungsten Nanoparticles for Efficient Hydrogen Evolution
,”
Appl. Catal. B
,
236
, pp.
147
153
.
28.
Chen
,
Y.
,
Ji
,
S.
,
Chen
,
C.
,
Peng
,
Q.
,
Wang
,
D.
, and
Li
,
Y.
,
2018
, “
Single-Atom Catalysts: Synthetic Strategies and Electrochemical Applications
,”
Joule
,
2
(
7
), pp.
1242
1264
.
29.
Sun
,
H.
,
Kim
,
H.
,
Song
,
S. Z.
, and
Jung
,
W.
,
2022
, “
Copper Foam-Derived Electrodes as Efficient Electrocatalysts for Conventional and Hybrid Water Electrolysis
,”
Mater. Rep.: Energy
,
2
(
2
), pp.
2666
9358
.
30.
Liang
,
K.
,
Tabassum
,
A.
,
Kothakonda
,
M.
,
Zhang
,
X.
,
Zhang
,
R.
,
Kenney
,
B.
,
Koplitz
,
B. D.
,
Sun
,
J.
, and
Naguib
,
M.
,
2022
, “
Two-Dimensional Titanium Carbonitride MXene as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction
,”
Mater. Rep.: Energy
,
2
(
1
), p.
100075
.
31.
Wysocka
,
I.
,
Czaplicka
,
N.
,
Pawelczyk
,
E.
,
Karczewski
,
J.
,
Sobczak
,
J.
,
Bielan
,
Z.
,
Maciejewski
,
M.
,
Kościelska
,
B.
, and
Rogala
,
A.
,
2023
, “
Novel Sugar-Based Nickel-Tungsten Carbide Catalysts for Dry Reforming of Hydrocarbons
,”
J. Ind. Eng. Chem.
,
124
, pp.
431
446
.
32.
Wang
,
F.
,
Liu
,
Y.
,
Lv
,
Y.
,
Ren
,
J.
,
Wang
,
R.
, and
Jiao
,
W.
,
2022
, “
Oxidative Desulfurization of Liquid Fuels Catalyzed by W2C@C Derived From Metallophthalocyanine/Phosphotungstic Acid Composites
,”
Sep. Purif. Technol.
,
281
, p.
119953
.
33.
Shaolong
,
L.
,
Yuchen
,
L.
,
Qiang
,
C.
,
Fanchuan
,
G.
,
Yixuan
,
W.
,
Jingyu
,
W.
,
Ye
,
Z.
,
Ruiyu
,
G.
, and
Jiaru
,
G.
,
2024
, “
Preparation of Pt/CNT Catalyst With High Dispersion Structure Via Plasma Jet
,”
Diam. Relat. Mater.
,
141
, p.
11674
.
34.
White
,
J. H.
, and
Abruna
,
H. D.
,
1988
, “
Electrosorption of Iodide on Platinum (111) Studied in Situ by X-Ray Absorption Spectroscopy
,”
J. Phys. Chem.
,
92
(
25
), pp.
7131
7134
.
35.
Golodnitsky
,
D.
,
Rosenberg
,
Y.
, and
Ulus
,
A.
,
2002
, “
The Role of Anion Additives in the Electrodeposition of Nickel–Cobalt Alloys From Sulfamate Electrolyte
,”
Electrochim. Acta
,
47
(
17
), pp.
2707
2714
.
36.
Kulesza
,
P. J.
, and
Faulkner
,
L. R.
,
1989
, “
Electrocatalytic Properties of Bifunctional Pt/W (VI,V) Oxide Microstructures Electrodeposited on Carbon Substrates
,”
Electroanal. Chem.
,
259
(
1–2
), pp.
81
98
.
37.
Kulesza
,
P. J.
, and
Faulkner
,
L. R.
,
1989
, “
Electrodeposition and Characterization of Three-Dimensional Tungsten (VI,V)-Oxide Films Containing Spherical Pt Microparticles
,”
J. Electrochem. Soc.
,
136
(
3
), pp.
707
713
.
38.
Cui
,
X.
,
Shi
,
J.
,
Chen
,
H.
,
Zhang
,
L.
,
Guo
,
L.
,
Gao
,
J.
, and
Li
,
J.
,
2008
, “
Platinum/Mesoporous WO3 as a Carbon-Free Electrocatalyst With Enhanced Electrochemical Activity for Methanol Oxidation
,”
J. Phys. Chem. B
,
112
(
38
), pp.
12024
12031
.
You do not currently have access to this content.