In this paper, the effects of gas flow rates and catalyst loading on polymer electrolyte membrane fuel cell (PEMFC) performance was investigated using a 50 cm2active area fuel cell fixture with serpentine flow field channels machined into poco graphite blocks. Membrane electrode assemblies (MEAs) with catalyst and gas flow rates at two levels each (0.5 mg/cm2, 1 mg/cm2; 0.3 l/min, 0.5 l/min, respectively) were tested at 60 °C without humidification. The cell performance was analyzed by taking ac impedance, Tafel plot, open circuit voltage, and area specific resistance measurements. It was observed that MEAs with lower gas flow rate had lesser cell resistance compared to MEAs with a higher gas flow rate. Tafel plot shows the highest exchange current density value of 102.05 mA cm2 for MEA with 0.5 mg/cm2 catalyst loading tested at reactant gas flow rate of 0.3 l/min signifying it had the least activation loss and fastest reaction rate. Open circuit voltage-time curve shows a higher output voltage and lesser voltage decay rate for MEAs tested at higher gas flow rates.

References

1.
Freya
,
Th.
, and
Linardi
,
M.
, 2004,
“Effects of Membrane Electrode Assembly Preparation on the Polymer Electrolyte Membrane Fuel Cell Performance,”
Electrochim. Acta
,
50
, pp.
99
105
.
2.
Vogel
,
B.
,
Aleksandrova
,
E.
,
Mitov
,
S.
,
Krafft
,
M.
,
Dreizler
,
A.
,
Kerres
,
J.
,
Hein
,
M.
, and
Rodunera
,
E.
, 2008,
“Observation of Fuel Cell Membrane Degradation by Ex Situ and In Situ Electron Paramagnetic Resonance,”
J. Electrochem. Soc.
,
155
(
6
), pp.
B570
B574
.
3.
Mittal
,
V. O.
,
Kunz
,
H. R.
, and
Fenton
,
J. M.
, 2007,
“Degradation Mechanisms in PEMFCs,”
J. Electrochem. Soc.
,
154
(
7
),
B652
B656
.
4.
Schulze
,
M.
,
Wagner
,
N.
,
Kaz
,
T.
, and
Friedrich
,
K. A.
, 2007,
“Combined Electrochemical and Surface Analysis Investigation of Degradation Processes in Polymer Electrolyte Membrane Fuel Cells,”
Electrochim. Acta
,
52
, pp.
2328
2336
.
5.
Alink
,
R.
,
Gerteison
,
D.
, and
Oszcipok
,
M.
, 2008,
“Degradation Effects in Polymer Electrolyte Membrane Fuel Cell Stacks by Sub-zero Operation—An In Situ and Ex Situ Analysis,”
J. Power Sources
,
182
, pp.
175
187
.
6.
Wolfgang
,
S.
, and
Ardalan
V.
, 2008,
“A Review of the Main Parameters Influencing Long-Term Performance and Durability of PEM Fuel Cells,”
J. Power Sources
,
180
, pp.
1
14
.
7.
Schulze
,
M.
,
Knori
,
T.
,
Schneider
,
A.
, and
Gulzow
,
E.
, 2004,
“Degradation of Sealings for PEFC Test Cells During Fuel Cell Operation,”
J. Power Sources
,
127
, pp.
222
229
.
8.
Ahn
,
S. Y.
,
Shin
,
S.-J.
,
Ha
,
H. Y.
,
Hong
,
S. A.
,
Lee
,
Y. C.
,
Lim
,
T. W.
, and
Oh
,
I. H.
, 2002,
“Performance and Lifetime Analysis of the kW-Class PEMFC Stack,”
J. Power Sources
,
106
, pp.
295
303
.
9.
Ma
,
L.
,
Wartgesen
,
S.
, and
Shores
,
D. A.
, 2000,
“Evaluation of Materials for Bipolar Plates in PEMFCs,”
J. New Mat. Electrochem. Syst.
,
3
, pp.
221
228
.
10.
Taniguchi
,
A.
,
Akita
,
T.
,
Yasuda
,
K.
, and
Miyazaki
,
Y.
, 2004,
“Analysis of Electrocatalyst Degradation in PEMFC Caused By Cell Reversal During Fuel Starvation,”
J. Power Sources
,
130
, pp.
42
49
.
11.
Yu J.
, ,
Matsuura
,
T.
,
Yoshikawa
,
Y.
,
Islam
,
M. N.
, and
Hori
,
M.
, 2005,
“In Situ Analysis of Performance Degradation of a PEMFC Under Non saturated Humidification,”
Electrochem. Solid State Lett.
,
8
,
A156
A158
.
12.
Yu J.
, ,
Yi
,
B.
,
Xing
,
D.
,
Liu
,
F.
,
Shao
,
Z.
,
Fu
,
Y.
, and
Zhang
,
H.
, 2003,
“Degradation Mechanism of Polystyrene Sulfonic Acid Membrane and Application of Its Composite Membranes in Fuel Cells,”
Phys. Chem. Chem. Phys.
,
5
, pp.
611
615
.
13.
Knights
,
S. D.
,
Colbow
,
K. M.
,
St-Pierre
,
J.
, and
Wilkinson
,
D. P.
, 2004,
“Aging Mechanisms and Lifetime of PEFC and DMFC,”
J. Power Sources
,
127
, pp.
127
134
.
14.
St-Pierre
,
J.
,
Wilkinson
,
D. P.
,
Knights
,
S.
, and,
Bos
,
M. L.
, 2009,
“Relationships Between Water Management, Contamination and Lifetime Degradation in PEFC,”
J. New Mat. Electrochem. Syst.
,
3
, pp.
99
106
.
15.
Kundu
,
S.
,
Fowler
,
M. W.
,
Simon
,
L. C.
, and
Grot
,
S.
, 2006,
“Morphological Features (Defects) in Fuel Cell Membrane Electrode Assemblies,”
J. Power Sources
,
157
, pp.
650
656
.
16.
Xingwen
,
Y.
, and
Siyu
Y.
, 2007,
“Recent Advances in Activity and Durability Enhancement of Pt/C Catalytic Cathode in PEMFC Part II: Degradation Mechanism and Durability Enhancement of Carbon Supported Platinum Catalyst,”
J. Power Sources
,
172
, pp.
145
154
.
17.
Jinfeng
,
W.
,
Xiao
,
Z. Y.
,
Jonathan
,
J. M.
,
Haijiang
,
W.
,
Jiujun
,
Z.
,
Jun
,
S.
,
Shaoshong
,
W.
, and
Walter
,
M.
, 2007,
“A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies,”
J. Power Sources
,
184
, pp.
104
119
.
18.
Thanganathan
,
U.
, and
Masayuki
N.
, 2007,
“Characterization and Performance Improvement of H2O2 Fuel Cells Based on Glass Membranes,”
J. Electrochem. Soc.
,
154
(
8
), pp.
B845
B851
.
19.
Hommura
,
S.
,
Kawahara
,
K.
,
Shimohira
,
T.
, and
Teraoka
,
Y.
, 2008,
“Development of a Method for Clarifying the Perfluorosulfonated Membrane Degradation Mechanism in a Fuel Cell Environment,”
J. Electrochem. Soc.
,
155
(
1
), pp.
A29
A33
.
20.
Vogel
,
B.
,
Aleksandrova
,
E.
,
Mitov
,
S.
,
Krafft
,
M.
,
Dreizler
,
A.
,
Kerres
,
J.
,
Hein
,
M.
, and
Rodunera
,
E.
, 2008,
“Observation of Fuel Cell Membrane Degradation by Ex Situ and In Situ Electron Paramagnetic Resonance,”
J. Electrochem. Soc.
,
155
(
6
), pp.
B570
B574
.
21.
James
,
L.
, and
Andrew
,
D.
, 2003,
Fuel Cell Systems Explained
, 2nd ed.,
Wiley
,
New York
, pp.
45
47
.
22.
Frano
,
B.
, 2005,
PEM Fuel Cells Theory and Practice
,
Elsevier Academic
,
New York
, pp.
254
258
.
23.
Yousfi
,
S. N.
,
Mocoteguy
,
Ph.
,
Candusso
,
D.
,
Hissel
,
D.
,
Hernandez
,
A.
, and
Aslanides
,
A.
, 2008,
“A Review on PEM Voltage Degradation Associated With Water Management: Impacts, Influent Factors and Characterization,”
J. Power Sources
,
183
, pp.
260
274
.
24.
Jinfeng
,
W.
,
Xiao
,
Z. Y.
,
Haijiang
,
W.
,
Mauricio
,
B.
,
Jonathan
,
J. M.
,
Jiujun
Z.
, 2008,
“Diagnostic Tools in PEM Fuel Cell Research: Part I Electrochemical Techniques
,”
Int. J. Hydrogen Energy
,
33
, pp.
1735
1746
.
25.
Parthasarathy
,
A.
,
Dave
,
B.
,
Srinivasan
,
S.
, and,
Appleby
,
A.
, 1992,
“The Platinum Microelectrode/Nafion Interface: An Electrochemical Impedance Spectroscopic Analysis of Oxygen Reduction Kinetics and Nafion Characteristics,”
J. Electrochem. Soc.
,
139
(
6
), pp.
1634
41
.
26.
Springer
,
T.
,
Zawodzinski
,
T.
,
Wilson
,
M.
, and
Gottesfeld
,
S.
, 1996,
“Characterization of Polymer Electrolyte Fuel Cells Using AC Impedance Spectroscopy,”
J. Electrochem. Soc.
,
143
(
2
), pp.
587
599
.
27.
Romero
,
C. T.
,
Arriaga
,
L.
, and
Cano
,
C. U.
, 2003,
“Impedance Spectroscopy As a Tool in the Evaluation of MEAs,”
J. Power Sources
,
118
(
1–2
), pp.
179
182
.
28.
Song
,
J. M.
,
Cha
,
S. Y.
, and
Lee
,
W. M.
, 2001,
“Optimal Composition of Polymer Electrolyte Fuel Cell Electrodes Determined by the AC Impedance Method,”
J. Power Sources
,
94
(
1
), pp.
78
84
.
29.
Jang
,
J. H.
,
Chiu
,
H. C.
,
Yang
,
W. M.
, and
Sun
,
W. L.
, 2008, “Effects of Operating Conditions on the Performances of Individual Cell and Stacks of PEM Fuel Cell”,
J. Power Sources
,
180
, pp.
476
483
.
30.
Sugawara
,
S.
,
Maruyama
,
T.
,
Nagahara
,
Y.
,
Kocha
,
S. S.
,
Shinohra
,
K.
,
Tsujita
,
K.
,
Mitsushima
,
S.
, and
Ota
,
K.
, 2009,
“Performance Decay of Proton-Exchange Membrane Fuel Cells Under Open Circuit Conditions Induced By Membrane Decomposition,”
J. Power Sources
,
187
(
2
), pp.
324
331
.
You do not currently have access to this content.