Wiresaw has emerged as a leading technology in wafer preparation for microelectronics fabrication, especially in slicing large silicon wafers (diameter⩾300 mm) for both microelectronic and photovoltaic applications. Wiresaw has also been employed to slice other brittle materials such as alumina, quartz, glass, and ceramics. The manufacturing process of wiresaw is a free abrasive machining (FAM) process. Specifically, the wiresaw cuts brittle materials through the “rolling-indenting” and “scratch-indenting” processes where the materials removal is resulting from mechanical interactions between the substrate of the workpiece and loss abrasives, which are trapped between workpiece and wire. Built upon results of previous investigation in modeling of wiresaw, a model of wiresaw slicing is developed based on indentation crack as well as the influence of wire carrying the abrasives. This model is used to predict the relationship between the rate of material removal and the mechanical properties of the workpiece together with the process parameters. The rolling, indenting, and scratching modes of materials removal are considered with a simple stochastic approach. The model provides us with the basis for improving the efficiency of the wiresaw manufacturing process based on the process parameters.

1.
Kao, I., Prasad, V., Chiang, F. P., Bhagavat, M., Wei, S., Chandra, M., Costantini, M., Leyvraz, P., Talbott, J., and Gupta, K., 1998 “Modeling and experiments on wiresaw for large silicon wafer manufacturing,” The 8th Int. Symp. on Silicon Mat. Sci. and Tech., San Diego, May.
2.
Buttner
,
A.
,
1985
, “
ID sawing-diameters increase
,”
Ind. Diamond Rev.
,
45
, pp.
77
79
.
3.
Struth
,
W. F.
,
Steffens
,
K.
, and
Konig
,
W.
,
1988
, “
Wafer slicing by internal diameter sawing
,”
Precis. Eng.
,
10
, pp.
29
34
.
4.
Fountain
,
C. W.
, and
Peck
,
R. L.
,
1970
, “
Simple, inexpensive wire saw for small specimens
,”
J. Phys. E
,
3
, pp.
725
726
.
5.
Anderson, J. R., 1980, “Wiresaw for low damage, low kerf loass wafering,” 14th IEEE Photovoltaic Specialists Conference, pp. 815–819, Phoenix, AZ.
6.
Wells, R., 1987, “Wire saw slicing of large diameter crystals,” Solid State Technol., Sept., pp. 63–65.
7.
Kojima
,
M.
,
Tomizawa
,
A.
, and
Takase
,
J.
,
1990
, “
Development of new wafer silicing equipment
,”
Sumitomo Kinzoku
,
42
, pp.
218
224
.
8.
Sahoo
,
R. K.
,
Prasad
,
V.
,
Kao
,
I.
,
Talbott
,
J.
, and
Gupta
,
K.
,
1998
, “
An integrated approach for analysis and design of wafer slicing by a wire saw
,”
ASME J. Electron. Packag.
,
120
, pp.
16
21
, Mar.
9.
Wei
,
S.
,
Wu
,
S.
,
Kao
,
I.
, and
Chiang
,
F. P.
,
1998
, “
Wafer surface measurements using shadow moire´ with Talbot effect
,”
ASME J. Electron. Packag.
,
120
, No.
2
, pp.
166
170
, June.
10.
Li
,
J.
,
Kao
,
I.
, and
Prasad
,
V.
,
1998
, “
Modeling stresses of contacts in wiresaw slicing of polycrystalline and crystalline ingots; Application to silicon wafer production
,”
ASME J. Electron. Packag.
,
120
, No.
2
, pp.
123
128
, June.
11.
Yang
,
F.
, and
Kao
,
I.
,
1999
, “
Interior stress for axisymmetric abrasive indentation in the free abrasive machining process: Slicing silicon wafers with modern wiresaw
,”
ASME J. Electron. Packag.
,
121
, No.
3
, pp.
191
195
, Sept.
12.
Wei
,
S.
, and
Kao
,
I.
,
2000
, “
Vibration analysis of wire in free abrasive machining of the modern wiresaw manufacturing process
,”
Int. J. Vib. Sound
,
231
, No.
5
, pp.
1383
1395
.
13.
Bhagavat
,
M.
,
Prasad
,
V.
, and
Kao
,
I.
,
2000
, “
Elasto-hydrodynamic interaction in the free abrasive wafer slicing using a wiresaw: Modeling and finite element analysis
,”
ASME J. Tribol.
,
122
, No.
2
, pp.
394
404
, Apr.
14.
Wei, S., and Kao, I., 1998, “Analysis of stiffness control and vibration of wire in wiresaw manufacturing process” Proceedings of the Manufacturing Engineering Division, IMECE 98, pp. 813–818, ASME Press.
15.
Evans, A. G., and Marshall, D. B., 1981, Fundamentals of Friction and Wear of Materials, chapter on “Wear Machanisms in Ceramics,” pp. 441–452, ASM, Metals Park, OH.
16.
Malkin
,
S.
, and
Ritter
,
J. E.
,
1989
, “
Griding mechanisms and strength degradation for ceramics
,”
ASME J. Eng. Industry
111
, pp.
167
174
.
17.
Bujis
,
M.
, and
Korpel-Van Houten
,
K.
,
1993
, “
A model for lapping of glass
,”
J. Mater. Sci.
,
28
, pp.
3014
3020
.
18.
Bujis
,
M.
, and
Korpel-Van Houten
,
K.
,
1993
, “
Three-body abrasion of brittle materials as studied by lapping
,”
Wear
,
166
, pp.
237
245
.
19.
Samuels
,
L. E.
, and
Mulhearn
,
T. O.
,
1957
, “
An experimental investigation of the deformed zone associated with indentation hardness impressions
,”
J. Mech. Phys. Solids
,
5
, pp.
125
134
.
20.
Marsh
,
D. M.
,
1964
, “
Plastic flow in glass
,”
Proc. R. Soc. London, Ser. A
,
279
, pp.
420
435
.
21.
Chiang
,
S. S.
,
Marshall
,
D. B.
, and
Evans
,
A. G.
,
1982
, “
The response of solids to elastic/plastic indentation, I. stresses and residual stresses
,”
J. Appl. Phys.
,
53
, pp.
298
311
.
22.
Hill, R., 1950, The Mathematical Theory of Plasticity, Oxford, New York.
23.
Lawn
,
B. R.
, and
Wilshaw
,
T. R.
,
1975
, “
Indentation fracture: Principles and applications
,”
J. Mater. Sci.
,
10
, pp.
1049
1081
.
24.
Lawn
,
B. R.
, and
Swain
,
M. V.
,
1975
, “
Microfracture beneath point indentations in brittle solids
,”
J. Mater. Sci.
,
10
, pp.
113
122
.
25.
Cook
,
R. F.
, and
Pharr
,
G. M.
,
1990
, “
Direct observation and analysis of indentation cracking in glasses and ceramics
,”
J. Am. Ceram. Soc.
,
73
, pp.
787
817
.
26.
Marshall
,
D. B.
,
Lawn
,
B. R.
, and
Evans
,
A. G.
,
1982
, “
Elastic/plastic indentation damage in ceramics: the lateral crack system
,”
J. Am. Ceram. Soc.
,
65
, pp.
561
566
.
27.
Kendall
,
K.
,
1978
, “
Complexities of compression failure
,”
Proc. R. Soc. London, Ser. A
,
361
, pp.
245
250
.
28.
Moore
,
M. A.
, and
King
,
F. S.
,
1980
, “
Fracture vs. plastic deformation processes in the sliding abrasive wear of ceramics
,”
Measurement
,
60
, pp.
123
127
.
29.
Broese, A., and Veldkamp, J. D., 1982, “Grinding brittle materials,” R. L. Williams, ed., Machining Hard Materials, pp. 131–135, Dearborn, MI, Soc. Manufacturing Engineers.
30.
Lawn
,
B. R.
,
Wiederhorn
,
S. M.
, and
Hockey
,
B. J.
,
1980
, “
Atomically sharp cracks in brittle solids: An electron microscopy study
,”
J. Mater. Sci.
,
15
, pp.
1207
1223
.
31.
Bhushen
,
B.
, and
Li
,
X. D.
,
1997
, “
Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices
,”
J. Mater. Sci.
,
12
, pp.
54
63
.
32.
Armstrong
,
R. W.
,
Ruff
,
A. W.
, and
Shin
,
H.
,
1996
, “
Elastic, plastic and cracking indentation behavior of silicon crystals
,”
Mater. Sci. Eng., A
,
209
, pp.
91
96
.
33.
McClintock, F. A., and Argon, A. S., 1966, Mechanical Behavior of Materials, Addison-Wesley, Reading, MA.
34.
Sher
,
A.
,
Chen
,
S.-B.
, and
Spicer
,
W. E.
,
1985
, “
Dislocations energies and hardness of semiconductors
,”
Appl. Phys. Lett.
,
46
, pp.
54
56
.
35.
Wortman
,
J. J.
, and
Evans
,
R. A.
,
1965
, “
Young’s modulus, shear modulus and poisson’s ratio in silicon and germanium
,”
J. Appl. Phys.
,
36
, pp.
153
156
.
36.
Lawn, B. R., 1993, Fracture of Brittle Solids, Cambridge University Press, 2nd Ed.
You do not currently have access to this content.