Abstract

Thermal interface materials (TIMs) are an important component in electronic packaging, and there is a concerted effort to understand their reliability when used under various environmental load conditions. Previous researchers have investigated gap fillers and other types of TIMs to understand their performance degradation under loading conditions such as thermal cycling and thermal aging. Most of the study in the literature focuses on studying the changes in thermal properties, and there is a lack of understanding when it comes to studying the mechanical behavior of TIMs. Degradation of mechanical properties is the cause for the loss in thermal performance and is critical during TIM selection process. Moreover, mechanical properties such as modulus and coefficient of thermal expansion (CTE) are critical to assess performance of TIMs using finite element analysis (FEA) and potentially save time and money in the evaluation and selection process. Due to the very soft nature of TIMs, sample preparation is a challenging part of material characterization. In this paper, commercially available TIMs are studied using testing methods such as thermomechanical analyzer (TMA), dynamic mechanical analyzer (DMA), and Fourier infrared spectroscopy (FTIR). These methods are used to characterize the material properties and study the changes in properties due to aging. In this work, the followings are presented: impact of filler content on the mechanical properties, sample preparation method for curable TIM materials with specified thicknesses, and impact of thermal aging on mechanical properties.

References

1.
Chow
,
J.
, and
Sitaraman
,
S.
,
2016
, “
Electroplated Copper Nanowires as Thermal Interface Materials
,”
15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)
, Las Vegas, NV, May 31–June 3, pp.
151
155
.
2.
Sun
,
S.
,
Chen
,
S.
,
Luo
,
X.
,
Fu
,
Y.
,
Ye
,
L.
, and
Liu
,
J.
,
2016
, “
Mechanical and Thermal Characterization of a Novel Nanocomposite Thermal Interface Material for Electronic Packaging
,”
Microelectron. Reliab.
,
56
, pp.
129
135
.10.1016/j.microrel.2015.10.028
3.
Tong
,
T.
, Zhao, Y., Delzeit, L., Kashani, A., Meyyappan, M., and Majumdar, A.,
2007
, “
Dense Vertically Aligned Multiwalled Carbon Nanotube Arrays as Thermal Interface Materials
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(
1
), pp.
92
100
.10.1109/TCAPT.2007.892079
4.
Li
,
S.
,
Zheng
,
Q.
,
Lv
,
Y.
,
Liu
,
X.
,
Wang
,
X.
,
Huang
,
P. Y.
,
Cahill
,
D. G.
, and
Lv
,
B.
,
2018
, “
High Thermal Conductivity in Cubic Boron Arsenide Crystals
,”
Science
,
361
(
6402
), pp.
579
581
.10.1126/science.aat8982
5.
Zheng
,
Q.
,
Li
,
S.
,
Li
,
C.
,
Lv
,
Y.
,
Liu
,
X.
,
Huang
,
P. Y.
,
Broido
,
D. A.
,
lv
,
B.
, and
Cahill
,
D. G.
,
2018
, “
High Thermal Conductivity in Isotopically Enriched Cubic Boron Phosphide
,”
Adv. Funct. Mater.
,
28
(
43
), p.
1805116
.10.1002/adfm.201805116
6.
Yuan
,
G.
,
Li
,
H.
,
Shan
,
B.
, and
Liu
,
J.
,
2019
, “
Thermal Interface Materials Based on Vertically Aligned Carbon Nanotube
,”
Micro Nanosyst.
,
11
(
1
), pp.
3
9
.10.2174/1876402911666181218143608
7.
Bar-Cohen
,
A.
,
Matin
,
K.
, and
Narumanchi
,
S.
,
2015
, “
Nanothermal Interface Materials: Technology Review and Recent Results
,”
ASME J. Electron. Packag.
,
137
(
4
), p.
040803
.10.1115/1.4031602
8.
Lv
,
P.
,
Tan
,
X.-W.
,
Yu
,
K.-H.
,
Zheng
,
R.-L.
,
Zheng
,
J.-J.
, and
Wei
,
W.
,
2016
, “
Super-Elastic Graphene/Carbon Nanotube Aerogel: A Novel Thermal Interface Material With Highly Thermal Transport Properties
,”
Carbon
,
99
, pp.
222
228
.10.1016/j.carbon.2015.12.026
9.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.10.1109/JPROC.2006.879796
10.
Gwinn
,
J. P.
, and
Webb
,
R. L.
,
2003
, “
Performance and Testing of Thermal Interface Materials
,”
Microelectron. J.,
34
(
3
), pp.
215
222
.10.1016/S0026-2692(02)00191-X
11.
Liu
,
J.
,
2008
, “
Recent Progress of Thermal Interface Material Research—An Overview
,”
14th International Workshop on Thermal Investigation of ICs and Systems, Rome, Italy, Sept. 24, pp. 156–162.
12.
Goel
,
N. E. A.
,
2008
, “
Technical Review of Characterization Methods for Thermal Interface Materials (TIM)
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM)
, Orlando, FL May 28, pp.
248
258
.
13.
Due
,
J.
, and
Robinson
,
A. J.
,
2013
, “
Reliability of Thermal Interface Materials: A Review
,”
Appl. Therm. Eng.
,
50
(
1
), pp.
455
463
.10.1016/j.applthermaleng.2012.06.013
14.
Chiu
,
C.-P.
,
Solbrekken
,
G. L.
,
LeBonheur
,
V.
, and
Xu
,
Y. E.
,
2000
, “
Application of Phase-Change Materials in Pentium (R) III and Pentium (R) III Xeon/Sup TM/Processor Cartridges
,”
Proceedings of International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces, Braselton, Georgia, Mar. 6, pp. 265–270.
15.
Chiu
,
C.-P.
,
Solbrekken
,
G. L.
,
LeBonheur
,
V.
, and
Xu
,
Y. E.
,
2001
, “
An Accelerated Reliability Test Method to Predict Thermal Grease Pump-Out in Flip-Chip Applications
,”
Proceedings of 51st Electronic Components and Technology Conference
, Orlando, FL, May 29, pp.
91
97
.
16.
Nnebe
,
I. M.
, and
Feger
,
C.
,
2008
, “
Drainage-Induced Dry-Out of Thermal Greases
,”
IEEE Trans. Adv. Packaging
,
31
(
3
), pp.
512
518
.10.1109/TADVP.2008.924231
17.
Gowda
,
A.
,
2007
, “
Reliability Testing of Thermal Greases
,”
Electron. Cooling
,
13
(
4
), p.
10
.https://www.electronics-cooling.com/2007/11/reliability-testing-of-thermal-greases/
18.
Gowda
,
A.
,
2005
, “
Reliability Testing of Silicone-Based Thermal Greases [IC Cooling Applications]
,” Semiconductor Thermal Measurement and Management IEEE 21st Annual IEEE Symposium, San Jose, CA, Mar. 15, pp. 64–71.
19.
De Sorgo
,
M.
,
1996
, “
Thermal Interface Materials
,”
Electron. Cooling
,
2
, pp.
12
17
. https://www.electronics-cooling.com/1996/09/thermal-interface-materials-2/
20.
Okereke
,
M. I.
, and
Ling
,
Y.
,
2018
, “
A Computational Investigation of the Effect of Three-Dimensional Void Morphology on the Thermal Resistance of Solder Thermal Interface Materials
,”
Appl. Therm. Eng.
,
142
, pp.
346
360
.10.1016/j.applthermaleng.2018.07.002
21.
Subramanian
,
V.
,
Sanchez
,
J.
,
Bautista
,
J.
,
He
,
Y.
,
Wang
,
J.
,
Das
,
A.
,
Schuldes
,
G.
,
Yazzie
,
K.
,
Dhavaleswarapu
,
H.
, and
Malatkar
,
P.
,
2019
, “
Mechanical Characterization of Thermal Interface Materials and Its Challenges
,”
ASME J. Electron. Packag.
,
141
(
1
), p.
010804
.10.1115/1.4042805
22.
Bharatham
,
L.
,
Fong
,
W. S.
,
Torresola
,
J.
, and
Koang
,
C. C.
,
2005
, “
Qualification of Phase Change Thermal Interface Material for Wave Solder Heat Sink on FCBGA Package
,”
Proceedings of Seventh Electronic Packaging Technology Conference (EPTC)
, Singapore, Dec. 7, p.
6
.
23.
Dal
,
S. L. B.
,
2004
, “
Degradation Mechanisms of Siloxane-Based Thermal Interface Materials Under Reliability Stress Conditions
,”
42nd IEEE International Reliability Physics Symposium Proceedings
, Phoenix, AZ, Apr. 25, pp.
537
542
.
24.
Chen
,
C. I.
,
Ni
,
C. Y.
,
Pan
,
H. Y.
,
Chang
,
C. M.
, and
Liu
,
D. S.
,
2009
, “
Practical Evaluation for Long‐Term Stability of Thermal Interface Material
,”
Exp. Tech.
,
33
(
1
), pp.
28
32
.10.1111/j.1747-1567.2008.00343.x
25.
Luo
,
X.
,
Xu, and
,
Y.
, and
Chung
,
D. D. L.
,
2001
, “
Thermal Stability of Thermal Interface Pastes, Evaluated by Thermal Contact Conductance Measurement
,”
ASME J. Electron. Packag.
,
123
(
3
), pp.
309
311
.10.1115/1.1371925
26.
Corporation
,
H. H.-T.
,
2018
, “
Principle of Thermomechanical Analysis (TMA)
,” Hitachi High-Technologies Corporation, Tokyo, Japan, accessed July, 1, 2019, https://www.hitachi-hightech.com/global/products/science/tech/ana/thermal/descriptions/tma.html
27.
Corporation
,
H. H.-T.
,
2018
, “
Principle of Dynamic Mechanical Analysis (DMA)
,” Hitachi High-Technologies Corporation, Tokyo, Japan, accessed July, 1, 2019, https://www.hitachi-hightech.com/global/products/science/tech/ana/thermal/descriptions/dma.html
28.
Pemberger
,
N.
,
Bittner
,
L.
,
Huck
,
C.
, “Spectroscopyonline.com,” Pharma Sciences, LLC, Iselin, NJ, accessed May 1, 2019, http://www.spectroscopyonline.com/using-near-infrared-spectroscopy-monitor-curing-reaction-silicone-adhesives?pageID=2
29.
Shimada
,
A.
,
Sugimoto
,
M.
,
Kudoh
,
H.
,
Tamura
,
K.
, and
Seguchi
,
T.
,
2014
, “
Degradation Mechanisms of Silicone Rubber (SiR) by Accelerated Ageing for Cables of Nuclear Power Plant
,”
IEEE Trans. Dielectr. Electr. Insul.
,
21
(
1
), pp.
16
23
.
30.
Tant
,
M. R.
,
McManus
,
H. L. N.
, and
Rogers
,
M. E.
,
1995
, “
High-Temperature Properties and Applications of Polymeric Materials: An Overview
,”
High-Temperature Properties and Applications of Polymeric Materials
,
American Chemical Society
,
Washington, DC
, pp.
1
20
.
31.
Adams
,
J. C.
,
2016
, “
Thermomechanical Analysis (TMA) and Its Application to Polymer Systems
,” Los Alamos National Laboratory, Los Alamos, NM.
You do not currently have access to this content.