Abstract

Power electronics are vital for the generation, conversion, transmission, and distribution of electrical energy. Improving the efficiency, power density, and reliability of power electronics is an important challenge that can be addressed with electrothermal codesign and optimization. Current thermal management approaches utilize metallic heat sinks (HSs), resulting in parasitic load generation due to different potentials between electronic components on the printed circuit board (PCB). To enable electrical isolation, a thermal interface material (TIM) or gap pad is placed between the PCB and HS, resulting in poor heat transfer. Here, we develop an approach to eliminate TIMs and gap pads through modularization of metallic HSs. The use of smaller modular heat sinks (MHSs) strategically placed on high power dissipation areas of the PCB enables elimination of electrical potential difference, and removal of electrical isolation materials, resulting in better cooling performance due to direct contact between devices and the HS. By studying a gallium nitride (GaN) 2 kW DC–DC power converter as a test platform for electrothermal codesign using the modular approach, and benchmarking performance with a commercial off-the-shelf HS design, we showed identical power dissipation rates with a 54% reduction in HS volume and a 8 °C reduction in maximum GaN device temperature. In addition to thermal performance improvement, the MHS design showed a 73% increase in specific power density with a 22% increase in volumetric power density.

References

1.
Benda
,
V.
,
2011
, “
Power Semiconductors—State of the Art and Future Trends
,”
Proceedings of the Fourth Global Conference on Power Control and Optimization
, AIP Conference Proceedings, Sarawak, Malaysia, June 27, pp.
16
24
.https://www.hilarispublisher.com/open-access/power-semiconductors-state-of-the-art-and-future-trends-2229-8711-2-119.pdf
2.
Vobecky
,
J.
,
2010
, “
Future Trends in High Power Devices
,”
Proceedings of the 27th International Conference on Microelectronics
, Nis, Serbia, May 16–19, pp.
67
72
.10.1109/MIEL.2010.5490532
3.
Kaplar
,
R. J.
,
Neely
,
J. C.
,
Huber
,
D. L.
, and
Rashkin
,
L. J.
,
2017
, “
Generation-After-Next Power Electronics: Ultrawide-Bandgap Devices, High-Temperature Packaging, and Magnetic Nanocomposite Materials
,”
IEEE Power Electron. Mag.
,
4
(
1
), pp.
36
42
.10.1109/MPEL.2016.2643098
4.
Kassakian
,
J. G.
, and
Jahns
,
T. M.
,
2013
, “
Evolving and Emerging Applications of Power Electronics in Systems
,”
IEEE J. Emerging Sel. Top. Power Electron.
,
1
(
2
), pp.
47
58
.10.1109/JESTPE.2013.2271111
5.
Biela
,
J.
,
Schweizer
,
M.
,
Waffler
,
S.
, and
Kolar
,
J. W.
,
2011
, “
SiC Versus Si—Evaluation of Potentials for Performance Improvement of Inverter and DC–DC Converter Systems by SiC Power Semiconductors
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2872
2882
.10.1109/TIE.2010.2072896
6.
Ali
,
H. M.
,
Ashraf
,
M. J.
,
Giovannelli
,
A.
,
Irfan
,
M.
,
Irshad
,
T. B.
,
Hamid
,
H. M.
,
Hassan
,
F.
, and
Arshad
,
A.
,
2018
, “
Thermal Management of Electronics: An Experimental Analysis of Triangular, Rectangular and Circular Pin-Fin Heat Sinks for Various PCMs
,”
Int. J. Heat Mass Transfer
,
123
, pp.
272
284
.10.1016/j.ijheatmasstransfer.2018.02.044
7.
Prasher
,
R.
,
2006
, “
Thermal Interface Materials: Historical Perspective, Status, and Future Directions
,”
Proc. IEEE
,
94
(
8
), pp.
1571
1586
.10.1109/JPROC.2006.879796
8.
Khattak
,
Z.
, and
Ali
,
H. M.
,
2019
, “
Air Cooled Heat Sink Geometries Subjected to Forced Flow: A Critical Review
,”
Int. J. Heat Mass Transfer
,
130
, pp.
141
161
.10.1016/j.ijheatmasstransfer.2018.08.048
9.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111403
.10.1115/1.4030989
10.
Kwon
,
B.
,
Foulkes
,
T.
,
Yang
,
T.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2019
, “
Air Jet Impingement Cooling of Electronic Devices Using Additively Manufactured Nozzles
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
10
(
2
), pp.
220
229
.10.1109/TCPMT.2019.2936852
11.
Alexander Hensler
,
T. B.
,
Neugebauer
,
S.
, and
Pfefferlein
,
S.
,
2017
, “
Air Cooled SiC Three Level Inverter With High Power Density for Industrial Applications
,”
PCIM Europe
, Nuremberg, Germany, May 16–18, pp.
1
8
.https://ieeexplore.ieee.org/document/7990691
12.
Chen
,
S.
,
Yu
,
W.
, and
Meyer
,
D.
,
2019
, “
Design and Implementation of Forced Air-Cooled, 140 kHz, 20 kW SiC MOSFET Based Vienna PFC
,” IEEE Applied Power Electronics Conference and Exposition (
APEC
), IEEE, Anaheim, CA, Mar. 17–21, pp.
1196
1203
.10.1109/APEC.2019.8721979
13.
Kercher
,
D. S.
,
Jeong-Bong
,
L.
,
Brand
,
O.
,
Allen
,
M. G.
, and
Glezer
,
A.
,
2003
, “
Microjet Cooling Devices for Thermal Management of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
26
(
2
), pp.
359
366
.10.1109/TCAPT.2003.815116
14.
Wrzecionko
,
B.
,
Looser
,
A.
,
Kolar
,
J. W.
, and
Casey
,
M.
,
2015
, “
High-Temperature (250 °C / 500 °F) 19 000 Min−1 BLDC Fan for Forced Air-Cooling of Advanced Automotive Power Electronics
,”
IEEE/ASME Trans. Mechatronics
,
20
(
1
), pp.
37
49
.10.1109/TMECH.2014.2309481
15.
Erp
,
R. V.
,
Kampitsis
,
G.
, and
Matioli
,
E.
,
2019
, “
A Manifold Microchannel Heat Sink for Ultra-High Power Density Liquid-Cooled Converters
,” IEEE Applied Power Electronics Conference and Exposition (
APEC
), IEEE, Anaheim, CA, Mar. 17–21, pp.
1383
1389
.10.1109/APEC.2019.8722308
16.
Jorg
,
J.
,
Taraborrelli
,
S.
,
Sarriegui
,
G.
,
De Doncker
,
R. W.
,
Kneer
,
R.
, and
Rohlfs
,
W.
,
2018
, “
Direct Single Impinging Jet Cooling of a Mosfet Power Electronic Module
,”
IEEE Trans. Power Electron.
,
33
(
5
), pp.
4224
4237
.10.1109/TPEL.2017.2720963
17.
Liang
,
Z.
,
2015
, “
Integrated Double Sided Cooling Packaging of Planar SiC Power Modules
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), IEEE, Montreal, QC, Canada, Sept. 20–24, pp.
4907
4912
.10.1109/ECCE.2015.7310352
18.
Olesen
,
K.
,
Bredtmann
,
R.
, and
Eisele
,
R.
,
2006
, “‘
ShowerPower’ New Cooling Concept for Automotive Applications
,” Automotive Power Electronics, Paris, France.https://www.researchgate.net/profile/Klaus_Olesen/publication/267305118_ShowerPower_New_Cooling_Concept_for_Automotive_Applications/
19.
Campbell
,
J. B.
,
Tolbert
,
L. M.
,
Ayers
,
C. W.
,
Ozpineci
,
B.
, and
Lowe
,
K. T.
,
2007
, “
Two-Phase Cooling Method Using the R134a Refrigerant to Cool Power Electronic Devices
,”
IEEE Trans. Ind. Appl.
,
43
(
3
), pp.
648
656
.10.1109/TIA.2007.895719
20.
Mudawar
,
I.
,
Bharathan
,
D.
,
Kelly
,
K.
, and
Narumanchi
,
S.
,
2009
, “
Two-Phase Spray Cooling of Hybrid Vehicle Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
501
512
.10.1109/TCAPT.2008.2006907
21.
Bostanci
,
H.
,
Van Ee
,
D.
,
Saarloos
,
B. A.
,
Rini
,
D. P.
, and
Chow
,
L. C.
,
2012
, “
Thermal Management of Power Inverter Modules at High Fluxes Via Two-Phase Spray Cooling
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
9
), pp.
1480
1485
.10.1109/TCPMT.2012.2190933
22.
Wang
,
P.
,
McCluskey
,
P.
, and
Bar-Cohen
,
A.
,
2013
, “
Two-Phase Liquid Cooling for Thermal Management of IGBT Power Electronic Module
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021001
.10.1115/1.4023215
23.
Oh
,
J.
,
Birbarah
,
P.
,
Foulkes
,
T.
,
Yin
,
S. L.
,
Rentauskas
,
M.
,
Neely
,
J.
,
Pilawa-Podgurski
,
R. C. N.
, and
Miljkovic
,
N.
,
2017
, “
Jumping-Droplet Electronics Hot-Spot Cooling
,”
Appl. Phys. Lett.
,
110
(
12
), p.
123107
.10.1063/1.4979034
24.
Foulkes
,
T.
,
Sett
,
S.
,
Sokalski
,
P.
,
Oh
,
J.
, and
Miljkovic
,
N.
,
2020
, “
Fundamental Limits of Jumping Droplet Heat Transfer
,”
Appl. Phys. Lett.
,
116
(
9
), p.
093701
.10.1063/1.5141744
25.
Foulkes
,
T.
,
Oh
,
J.
,
Pilawa-Podgurski
,
R.
, and
Miljkovic
,
N.
,
2019
, “
Self-Assembled Liquid Bridge Confined Boiling on Nanoengineered Surfaces
,”
Int. J. Heat Mass Transfer
,
133
, pp.
1154
1164
.10.1016/j.ijheatmasstransfer.2018.12.073
26.
Birbarah
,
P.
,
Gebrael
,
T.
,
Foulkes
,
T.
,
Stillwell
,
A.
,
Moore
,
A.
,
Pilawa-Podgurski
,
R.
, and
Miljkovic
,
N.
,
2020
, “
Water Immersion Cooling of High Power Density Electronics
,”
Int. J. Heat Mass Transfer
,
147
, p.
118918
.10.1016/j.ijheatmasstransfer.2019.118918
27.
Moon
,
H.
,
Miljkovic
,
N.
, and
King
,
W. P.
,
2020
, “
High Power Density Thermal Energy Storage Using Additively Manufactured Heat Exchangers and Phase Change Material
,”
Int. J. Heat Mass Transfer
,
153
, p.
119591
.10.1016/j.ijheatmasstransfer.2020.119591
28.
Foulkes
,
T.
,
Oh
,
J.
,
Sokalski
,
P.
,
Li
,
L.
,
Sett
,
S.
,
Sotelo
,
J.
,
Yan
,
X.
,
Pilawa-Podgurski
,
R.
,
Castaneda
,
A.
,
Steinlauf
,
M.
, and
Miljkovic
,
N.
,
2020
, “
Jumping Droplets Electronics Cooling: Promise Versus Reality
,”
Appl. Phys. Lett.
,
116
(
20
), p.
203701
.10.1063/5.0002537
29.
Barth
,
C.
,
Foulkes
,
T.
,
Azofeifa
,
O.
,
Colmenares
,
J.
,
Coulson
,
K.
,
Miljkovic
,
N.
, and
Pilawa-Podgurski
,
R. C. N.
,
2020
, “
Design, Operation and Loss Characterization of a 1 kW GaN-Based 3-Level Converter at Cryogenic Temperatures
,”
IEEE Trans. Power Electron.
,
35
(
11
), pp.
12040
12041
.10.1109/TPEL.2020.2989310
30.
Ohadi
,
M.
, and
Q
,
J.
,
2004
, “
Thermal Management of Harsh-Environment Electronics
,”
Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 11.10.1109/STHERM.2004.1291329
31.
Foller Renken
,
R. K.
,
2005
, “
High Temperature Electronic for Future Hybrid Powertrain Applications
,”
European Conference on Power Electronics and Applications, Dresden
, Germany, Sept. 11–14, pp.
1
7
.10.1109/EPE.2005.219769
32.
Wrzecionko
,
B.
,
Bortis
,
D.
, and
Kolar
,
J. W.
,
2014
, “
A 120 °C Ambient Temperature Forced Air-Cooled Normally-Off SiC JFET Automotive Inverter System
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2345
2358
.10.1109/TPEL.2013.2294906
33.
Christen
,
D.
,
Stojadinovic
,
M.
, and
Biela
,
J.
,
2017
, “
Energy Efficient Heat Sink Design: Natural Versus Forced Convection Cooling
,”
IEEE Trans. Power Electron.
,
32
(
11
), pp.
8693
8704
.10.1109/TPEL.2016.2640454
34.
Pua
,
S. W.
,
Ong
,
K. S.
,
Lai
,
K. C.
, and
Naghavi
,
M. S.
,
2019
, “
Natural and Forced Convection Heat Transfer Coefficients of Various Finned Heat Sinks for Miniature Electronic Systems
,”
Proc. Inst. Mech. Eng., Part A
,
233
(
2
), pp.
249
261
.10.1177/0957650918784420
35.
Blinov
,
A.
,
Vinnikov
,
D.
, and
Lehtla
,
T.
,
2011
, “
Cooling Methods for High-Power Electronic Systems
,”
Electr. Control Commun. Eng.
,
29
(
1
), pp.
79
86
.10.2478/v10144-011-0014-x
36.
Dang
,
B.
,
Bakir
,
M. S.
,
Sekar
,
D. C.
,
King
,
J. C. R.
, and
Meindl
,
J. D.
,
2010
, “
Integrated Microfluidic Cooling and Interconnects for 2D and 3D Chips
,”
IEEE Trans. Adv. Packag.
,
33
(
1
), pp.
79
87
.10.1109/TADVP.2009.2035999
37.
Koo
,
J.-M.
,
Im
,
S.
,
Jiang
,
L.
, and
Goodson
,
K. E.
,
2005
, “
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
,”
ASME J. Heat Transfer
,
127
(
1
), pp.
49
58
.10.1115/1.1839582
38.
Mahajan
,
R.
,
Chia-Pin
,
C.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(
8
), pp.
1476
1486
.10.1109/JPROC.2006.879800
39.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
(
4
), pp.
235
238
.10.1038/nnano.2008.417
40.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.10.1109/TADVP.2007.898517
41.
Khan
,
W. A.
,
Culham
,
J. R.
, and
Yovanovich
,
M. M.
,
2009
, “
Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
,”
IEEE Trans. Compon. Packag. Technol.
,
32
(
2
), pp.
243
251
.10.1109/TCAPT.2009.2022586
42.
Shah
,
A.
,
Sammakia
,
B. G.
,
Srihari
,
H.
, and
Ramakrishna
,
K.
,
2004
, “
A Numerical Study of the Thermal Performance of an Impingement Heat Sink—Fin Shape Optimization
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
4
), pp.
710
717
.10.1109/TCAPT.2004.838879
43.
Ning
,
P.
,
Lei
,
G.
,
Wang
,
F.
, and
Ngo
,
K. D. T.
,
2008
, “
Selection of Heatsink and Fan for High-Temperature Power Modules Under Weight Constraint
,”
23rd Annual IEEE Applied Power Electronics Conference and Exposition
, Austin, TX, Feb. 24–28, pp.
192
198
.10.1109/APEC.2008.4522721
44.
Drofenik
,
U.
,
Laimer
,
G.
, and
Kolar
,
J. W.
,
2005
, “
Theoretical Converter Power Density Limits for Forced Convection Cooling
,”
International Conference, Power Electronics, Intelligent Motion, Power Supply
; PCIM 2005 Europe; Nuremberg, Germany, June 7–9, pp.
608
619
.https://www.researchgate.net/profile/Johann_Kolar/publication/228893641_Theoretical_converter_power_density_limits_for_forced_convection_cooling/links/0f317530cb798b8150000000/Theoretical-converter-power-density-limits-for-forced-convection-cooling.pdf
45.
Castelan
,
A.
,
Cougo
,
B.
,
Dutour
,
S.
, and
Meynard
,
T.
,
2019
, “
3D Analytical Modelling of Plate Fin Heat Sink on Forced Convection
,”
Math. Comput. Simul.
,
158
, pp.
296
307
.10.1016/j.matcom.2018.09.011
46.
Sakanova
,
A.
,
Yin
,
S.
,
Zhao
,
J.
,
Wu
,
J. M.
, and
Leong
,
K. C.
,
2014
, “
Optimization and Comparison of Double-Layer and Double-Side Micro-Channel Heat Sinks With Nanofluid for Power Electronics Cooling
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
124
134
.10.1016/j.applthermaleng.2014.01.005
47.
Tong Wu
,
B. O.
,
Chinthavali
,
M.
,
Wang
,
Z.
,
Debnath
,
S.
, and
Campbell
,
S.
,
2017
, “
Design and Optimization of 3D Printed Air-Cooled Heat Sinks Based on Genetic Algorithms
,” IEEE Transportation Electrification Conference and Expo (
ITEC
), Chicago, IL, June 22–24, pp.
650
655
.10.1109/ITEC.2017.7993346
48.
Shamvedi
,
D.
,
McCarthy
,
O. J.
,
O'Donoghue
,
E.
,
Danilenkoff
,
C.
,
O'Leary
,
P.
, and
Raghavendra
,
R.
,
2018
, “
3D Metal Printed Heat Sinks With Longitudinally Varying Lattice Structure Sizes Using Direct Metal Laser Sintering
,”
Virtual Phys. Prototyping
,
13
(
4
), pp.
301
310
.10.1080/17452759.2018.1479528
49.
Collins
,
I. L.
,
Weibel
,
J. A.
,
Pan
,
L.
, and
Garimella
,
S. V.
,
2019
, “
A Permeable-Membrane Microchannel Heat Sink Made by Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1174
1183
.10.1016/j.ijheatmasstransfer.2018.11.126
50.
Kempers
,
R.
,
Colenbrander
,
J.
,
Tan
,
W.
,
Chen
,
R.
, and
Robinson
,
A. J.
,
2020
, “
Experimental Characterization of a Hybrid Impinging Microjet-Microchannel Heat Sink Fabricated Using High-Volume Metal Additive Manufacturing
,”
Int. J. Thermofluids
, 5–6, p. 100029.10.1016/j.ijft.2020.100029
51.
Ohadi
,
M. M.
,
Choo
,
S. V. D.
,
Pecht
,
K. M.
, and
Lawler
,
J. V.
,
2012
, “
A Comparison Analysis of Air, Liquid, and Two-Phase Cooling of Data Centers
,”
28th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp.
58
63
.10.1109/STHERM.2012.6188826
52.
Zhao
,
C. Y.
, and
Lu
,
T. J.
,
2002
, “
Analysis of Microchannel Heat Sinks, for Electronics Cooling
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4857
4869
.10.1016/S0017-9310(02)00180-1
53.
Tan
,
H.
,
Wu
,
L.
,
Wang
,
M.
,
Yang
,
Z.
, and
Du
,
P.
,
2019
, “
Heat Transfer Improvement in Microchannel Heat Sink by Topology Design and Optimization for High Heat Flux Chip Cooling
,”
Int. J. Heat Mass Transfer
,
129
, pp.
681
689
.10.1016/j.ijheatmasstransfer.2018.09.092
54.
Kumar
,
S.
,
Sarkar
,
M.
,
Singh
,
P. K.
, and
Lee
,
P. S.
,
2019
, “
Study of Thermal and Hydraulic Performance of Air Cooled Minichannel Heatsink With Novel Geometries
,”
Int. Commun. Heat Mass Transfer
,
103
, pp.
31
42
.10.1016/j.icheatmasstransfer.2019.02.008
55.
Drofenik
,
U.
,
Stupar
,
A.
, and
Kolar
,
J. W.
,
2011
, “
Analysis of Theoretical Limits of Forced-Air Cooling Using Advanced Composite Materials With High Thermal Conductivities
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
4
), pp.
528
535
.10.1109/TCPMT.2010.2100730
56.
Sahoo
,
S. K.
,
Das
,
M. K.
, and
Rath
,
P.
,
2018
, “
Hybrid Cooling System for Electronics Equipment During Power Surge Operation
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
8
(
3
), pp.
416
426
.10.1109/TCPMT.2017.2756919
57.
Sakanova
,
A.
, and
Tseng
,
K. J.
,
2018
, “
Comparison of Pin-Fin and Finned Shape Heat Sink for Power Electronics in Future Aircraft
,”
Appl. Therm. Eng.
,
136
, pp.
364
374
.10.1016/j.applthermaleng.2018.03.020
58.
Krueger
,
W. B.
, and
Bar-Cohen
,
A.
,
2004
, “
Optimal Numerical Design of Forced Convection Heat Sinks
,”
IEEE Trans. Compon. Packag. Technol.
,
27
(
2
), pp.
417
425
.10.1109/TCAPT.2004.830969
59.
Luo
,
X.
,
Xiong
,
W.
,
Cheng
,
T.
, and
Liu
,
S.
,
2009
, “
Design and Optimization of Horizontally-Located Plate Fin Heat Sink for High Power LED Street Lamps
,”
Electronic Components and Technology Conference, San Diego
, CA, Mar. 18–22, pp.
854
859
.10.1109/ECTC.2009.5074112
60.
Drofenik
,
U.
,
Laimer
,
G.
, and
Kolar
,
J. W.
,
2005
, “
Theoretical Converter Power Density Limits for Forced Convection Cooling
,”
International Conference, Power Electronics, Intelligent Motion, Power Quality
, Nuremberg, Germany, June 7–9, pp.
608
619
.https://www.researchgate.net/profile/Johann_Kolar/publication/228893641_Theoretical_converter_power_density_limits_for_forced_convection_cooling/links/0f317530cb798b8150000000/Theoretical-converter-power-density-limits-for-forced-convection-cooling.pdf
61.
Drofenik
,
U.
,
Laimer
,
G.
, and
Kolar
,
J. W.
,
2005
, “
Pump Characteristic Based Optimization of a Direct Water Cooling System for a 10-kW/500-kHz Vienna Rectifier
,”
IEEE Trans. Power Electron.
,
20
(
3
), pp.
704
714
.10.1109/TPEL.2005.846529
62.
Drofenik
,
U.
, and
Kolar
,
J. W.
,
2003
, “
Thermal Analysis of a Multi-Chip Si/SiC-Power Module for Realization of a Bridge Leg of a 10 kW Vienna Rectifier
,” Proceedings of the 25th IEEE International Telecommunications Energy Conference (
INTELEC
), Yokohama, Japan, Oct. 23, pp.
826
833
.https://ieeexplore.ieee.org/document/1252212
63.
Gautam
,
D.
,
Wager
,
D.
,
Musavi
,
F.
,
Edington
,
M.
,
Eberle
,
W.
, and
Dunford
,
W. G.
,
2013
, “
A Review of Thermal Management in Power Converters With Thermal Vias
,” 28th Annual IEEE Applied Power Electronics Conference and Exposition (
APEC
), Long Beach, CA, Mar. 17–21, pp.
627
632
.10.1109/APEC.2013.6520276
64.
Pallo
,
N.
,
Modeer
,
T.
, and
Pilawa-Podgurski
,
R. C. N.
,
2017
, “
Electrically Thin Approach to Switching Cell Design for Flying Capacitor Multilevel Converters
,” 2017 IEEE Fifth Workshop on Wide Bandgap Power Devices and Applications (
WiPDA
), Albuquerque, NM, Oct. 30–Nov. 1, pp.
411
416
.10.1109/WiPDA.2017.8170582
65.
Kueck
,
C.
,
2012
, “
Power Supply Layout and EMI
,” Linear Technology Application Note 139, pp. 1–20.https://www.analog.com/media/en/technical-documentation/application-notes/an139f.pdf
66.
GaN Systems Inc.,
2016
, “
PCB-Thermal-Design-Guide-Enhancement-Mode-031815
,” GaN Systems Inc., Ottawa, ON, Canada, Application Note GNOO5 Rev 150318.
67.
GaN Systems Inc., 2017, “
GS66508B Bottom-Side Cooled 650 V E-Mode GaN Transistor Preliminary Datasheet
,” GaN Systems Inc., Ottawa, ON, Canada, Rev 200227.
68.
Zhang
,
W.
, and
Feng
,
G.
,
2019
, “
A Quick PCB Thermal Calculation for Power Electronic Devices With Exposed Pad Packages
,” PCIM Asia VDE, Shanghai, China, June 26–28, pp.
1
8
. https://www.onsemi.com/pub/Collateral/AND9596-D.PDF
69.
Khan
,
W. A.
,
2004
, “
Modeling of Fluid Flow and Heat Transfer for Optimization of Pin-Fin Heat Sinks
,”
Doctor of Philosophy in Mechanical Engineering thesis
, University of Waterloo, Waterloo, ON, Canada.http://hdl.handle.net/10012/947
70.
Tijani
,
A. S.
, and
Jaffri
,
N. B.
,
2018
, “
Thermal Analysis of Perforated Pin-Fins Heat Sink Under Forced Convection Condition
,”
Procedia Manuf.
,
24
, pp.
290
298
.10.1016/j.promfg.2018.06.025
71.
Pallo
,
N.
,
Kharangate
,
C.
,
Modeer
,
T.
,
Schaadt
,
J.
,
Asheghi
,
M.
,
Goodson
,
K.
, and
Pilawa-Podgurski
,
R.
,
2018
, “
Modular Heat Sink for Chip-Scale GaN Transistors in Multilevel Converters
,”
IEEE Applied Power Electronics Conference and Exposition (APEC)
, San Antonio, TX, Mar. 4–8, pp.
2798
2805
.
You do not currently have access to this content.