Abstract

This paper investigated the effect of heat spreading on the boiling of the Novec 649™ for two-phase immersion cooling of electronics. Reference pool boiling tests were performed by attaching a 25.4 mm by 25.4 mm square copper plate to a same-sized heater, thus minimizing lateral heat spreading. Experimental measurements showed that the critical heat flux (CHF) happened at a heat flux of 17.4±0.8 W/cm2. Then, lateral heat spreading through the heat spreader was studied by attaching larger (47 mm by 47 mm) spreaders with four different thicknesses to the copper plate. With an increase in the integrated heat spreader (IHS) thickness from 1 mm to 6 mm, the CHF increased by more than 60% at the saturation condition. One plate was a 1 mm-thick IHS removed from a commercial microprocessor. In this case, the CHF happens at 8.6 W/cm2 (50% lower compared to the reference case) in the saturation condition. At CHF, the boiling can be observed on the whole surface, with columns and slugs regime at the center and the fully developed nucleate boiling regime at the edges. This nonuniform boiling was more pronounced in subcooled conditions, in which the CHF occurred at the center while there were regions at the edges that had no boiling. Finally, the performance of a microporous-coated IHS (with 3.15 mm thickness) was compared to the 6 mm thick IHS. The thermal resistance was almost equal for powers above 200 W. This indicates that lateral heat spreading is a critical parameter for the thermal design of immersion cooling along with microporous coating.

References

1.
Garimella
,
S. V.
,
Persoons
,
T.
,
Weibel
,
J.
, and
Yeh
,
L. T.
,
2013
, “
Technological Drivers in Data Centers and Telecom Systems: Multiscale Thermal, Electrical, and Energy Management
,”
Appl. Energy
,
107
, pp.
66
80
.10.1016/j.apenergy.2013.02.047
2.
Masanet
,
E.
,
Shehabi
,
A.
,
Lei
,
N.
,
Smith
,
S.
, and
Koomey
,
J.
,
2020
, “
Recalibrating Global Data Center Energy-Use Estimates
,”
Science
,
367
(
6481
), pp.
984
986
.10.1126/science.aba3758
3.
Garimella
,
S. V.
,
Yeh
,
L.-T.
, and
Persoons
,
T.
,
2012
, “
Thermal Management Challenges in Telecommunication Systems and Data Centers
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
8
), pp.
1307
1316
.10.1109/TCPMT.2012.2185797
4.
Whitney, J., and Delforge, P.,
2021
, “
Data Center Efficiency Assessment
,” NRDC, accessed Apr. 28, 2021, www.nrdc.org/sites/default/files/data-center-efficiency-assessment-IP.pdf
5.
Kulkarni
,
D.
,
Tang
,
X.
,
Ahuja
,
S.
,
Dischler
,
R.
, and
Mahajan
,
R.
,
2018
, “
Experimental Study of Two-Phase Cooling to Enable Large-Scale System Computing Performance
,”
Proceedings of the 17th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2018
, San Diego, CA, May 29–June 1.
6.
Kheirabadi
,
A. C.
, and
Groulx
,
D.
,
2016
, “
Cooling of Server Electronics A Design Review of Existing Technology
,”
Appl. Therm. Eng.
,
105
, pp.
622
638
.10.1016/j.applthermaleng.2016.03.056
7.
Kadam
,
S. T.
, and
Kumar
,
R.
,
2014
, “
Twenty First Century Cooling Solution: Microchannel Heat Sinks
,”
Int. J. Therm. Sci.
,
85
, pp.
73
92
.10.1016/j.ijthermalsci.2014.06.013
8.
Ghaffari
,
O.
,
Solovitz
,
S. A.
,
Ikhlaq
,
M.
, and
Arik
,
M.
,
2016
, “
An Investigation Into Flow and Heat Transfer of an Ultrasonic Micro-Blower Device for Electronics Cooling Applications
,”
Appl. Therm. Eng.
,
106
, pp.
881
889
.10.1016/j.applthermaleng.2016.06.094
9.
Ghaffari
,
O.
,
Ikhlaq
,
M.
, and
Arik
,
M.
,
2015
, “
An Experimental Study of Impinging Synthetic Jets for Heat Transfer Augmentation
,”
Int. J. Air-Cond. Refrig
.
,
23
(
3
), p. 1550024.10.1142/S2010132515500248
10.
Schmidt
,
R.
,
2021
, “
Packaging of New Servers-Energy Efficiency Aspects
,” IBM Corporation, Armonk, New York, accessed Apr. 28, 2021, https://e3s-center.berkeley.edu/wp-content/uploads/2017/07/RogerSchmidt.pdf
11.
Alkharabsheh
,
S.
,
Puvvadi
,
U. L. N.
,
Ramakrishnan
,
B.
,
Ghose
,
K.
, and
Sammakia
,
B.
,
2018
, “
Failure Analysis of Direct Liquid Cooling System in Data Centers
,”
ASME J. Electron. Packag
.,
140
(
2
), p.
020902
.10.1115/1.4039137
12.
Yuksel
,
A.
,
Mahaney
,
V.
,
Marroquin
,
C.
,
Tian
,
S.
,
Hoffmeyer
,
M.
,
Schultz
,
M.
, and
Takken
,
T.
,
2021
, “
An Overview of Thermal and Mechanical Design, Control, and Testing of the World's Most Powerful and Fastest Supercomputer
,”
ASME J. Electron. Packag.
,
143
(
1
), p.
011005
.10.1115/1.4046847
13.
Bar-Cohen
,
A.
,
1983
, “
Thermal Design of Immersion Cooling Modules for Electronic Components
,”
Heat Transfer Eng.
,
4
(
3–4
), pp.
35
50
.10.1080/01457638108939607
14.
Abreu
,
V.
,
Harrison
,
M.
,
Gess
,
J.
, and
Moita
,
A. S.
,
2018
, “
Two-Phase Thermosiphon Cooling Using Integrated Heat Spreaders With Copper Microstructures
,”
Proceedings of the 17th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITherm 2018
,
San Diego, CA, May 29–June 1.
10.1109/ITHERM.2018.8419644
15.
Gess
,
J. L.
,
Bhavnani
,
S. H.
, and
Johnson
,
R. W.
,
2015
, “
Experimental Investigation of a Direct Liquid Immersion Cooled Prototype for High Performance Electronic Systems
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
5
(
10
), pp.
1451
1464
.10.1109/TCPMT.2015.2453273
16.
Khalili
,
S.
,
Rangarajan
,
S.
,
Gektin
,
V.
,
Alissa
,
H.
, and
Sammakia
,
B.
,
2020
, “
An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled Rack Under Steady and Transient Information Technology Loads
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041002
.10.1115/1.4048180
17.
Pelletier
,
M.
,
Normandin
,
I.
, and
Jasmin
,
S.
,
2017
, “
Apparatus and Methods for Cooling a CPU Using a Liquid Bath
,” Patent No. 9655279.
18.
Campbell
,
L. A.
,
Chu
,
R. C.
,
David
,
M. P.
,
Ellsworth Jr
,
M. J.
,
Iyengar
,
M. K.
, and
Simons
,
R. E.
,
2013
, “
Multi-Fluid, Two-Phase Immersion-Cooling of Electronic Component (S)
,” Patent No.
US8619425B2
.https://patents.google.com/patent/US8619425B2/en
19.
Tuma
,
P. E.
,
2010
, “
The Merits of Open Bath Immersion Cooling of Datacom Equipment
,” 26th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (
SEMI-THERM
), Santa Clara, CA, Feb. 21–25, pp.
123
131
.10.1109/STHERM.2010.5444305
20.
Coles
,
H.
,
Herrlin
,
M.
, and
Org
,
E.
,
2016
,
Lawrence Berkeley National Laboratory Recent Work Title Immersion Cooling of Electronics in DoD Installations
.
21.
Al Sayed
,
C.
,
Ghaffari
,
O.
,
Grenier
,
F.
,
Tong
,
W.
,
Bolduc
,
M.
,
Morissette
,
J. F.
,
Jasmin
,
S.
, and
Sylvestre
,
J.
,
2020
, “
Localized Pool Boiling and Condensation Experiments Over Functional CPU: Optimizing the Overall Thermal Resistance Via Different Heat Transfer Scenarios
,”
InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM
,
Orlando, FL, July 21–23, pp. 410–416.
10.1109/ITherm45881.2020.9190371
22.
Tuma
,
P.
,
Schulz
,
J.
,
Bonk
,
J.
,
Roy
,
R.
,
DeLorme
,
M.
, and
Logan
,
P.
,
2018
, “
An Exposure Assessment Approach for Potential Thermal Degradation Compounds in 2-Phase Immersion Cooling Operations
,”
Process Saf. Prog.
,
37
(
3
), pp.
369
375
.10.1002/prs.11956
23.
Ghaffari
,
O.
,
Grenier
,
F.
,
Morissette
,
J. F.
,
Bolduc
,
M.
,
Jasmin
,
S.
, and
Sylvestre
,
J.
,
2019
, “
Pool Boiling Experiment of Dielectric Liquids and Numerical Study for Cooling a Microprocessor
,”
InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, ITHERM
,
IEEE Computer Society
, Las Vegas, NV, May 28–31, pp.
540
545
.10.1109/ITHERM.2019.8757380
24.
Sylvestre
,
J.
, and
Jasmin
,
S.
,
2019
, “
Apparatus and Methods for Cooling of an Integrated Circuit
,” U.S. Patent 10,390,460.
25.
Leong
,
K. C.
,
Ho
,
J. Y.
, and
Wong
,
K. K.
,
2017
, “
A Critical Review of Pool and Flow Boiling Heat Transfer of Dielectric Fluids on Enhanced Surfaces
,”
Appl. Therm. Eng.
,
112
, pp.
999
1019
.10.1016/j.applthermaleng.2016.10.138
26.
Ali
,
A. F.
, and
El-Genk
,
M. S.
,
2012
, “
Spreaders for Immersion Nucleate Boiling Cooling of a Computer Chip With a Central Hot Spot
,”
Energy Convers. Manag.
,
53
(
1
), pp.
259
267
.10.1016/j.enconman.2011.09.007
27.
Arik
,
M.
,
Bar-Cohen
,
A.
, and
You
,
S. M.
,
2007
, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids by Microporous Coatings
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
997
1009
.10.1016/j.ijheatmasstransfer.2006.08.005
28.
Wu
,
Z.
,
Cao
,
Z.
, and
Sundén
,
B.
,
2019
, “
Saturated Pool Boiling Heat Transfer of Acetone and HFE-7200 on Modified Surfaces by Electrophoretic and Electrochemical Deposition
,”
Appl. Energy
,
249
, pp.
286
299
.10.1016/j.apenergy.2019.04.160
29.
3M Science. Applied to Life.TM,
2021
, “
3MTM NovecTM Engineered Fluid, 649
,” 3M Science. Applied to Life.TM, accessed Apr. 29, 2021, www.3mcanada.ca/3M/en_CA/p/d/b5005005025/
30.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.10.1016/0894-1777(88)90043-X
31.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling-A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
(
C
), pp.
157
239
.10.1016/S0065-2717(08)70205-3
32.
Stephan
,
K.
, and
Abdelsalam
,
M.
,
1980
, “
Heat-Transfer Correlations for Natural Convection Boiling
,”
Int. J. Heat Mass Transfer
,
23
(
1
), pp.
73
87
.10.1016/0017-9310(80)90140-4
33.
Ribatski
,
G.
, and
Jabardo
,
J. M. S.
,
2003
, “
Experimental Study of Nucleate Boiling of Halocarbon Refrigerants on Cylindrical Surfaces
,”
Int. J. Heat Mass Transfer
,
46
(
23
), pp.
4439
4451
.10.1016/S0017-9310(03)00252-7
34.
Liao
,
L.
,
Bao
,
R.
, and
Liu
,
Z.
,
2008
, “
Compositive Effects of Orientation and Contact Angle on Critical Heat Flux in Pool Boiling of Water
,”
Heat Mass Transfer Stoffuebertragung
,
44
(
12
), pp.
1447
1453
.10.1007/s00231-008-0384-6
35.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
36.
Zuber
,
N.
,
1959
, “Hydrodynamic Aspects of Boiling Heat Transfer (Thesis), Report No.
AECU-4439
. 10.2172/4175511
37.
Yagov
,
V. V.
,
2014
, “
Is a Crisis in Pool Boiling Actually a Hydrodynamic Phenomenon?
,”
Int. J. Heat Mass Transfer
,
73
, pp.
265
273
.10.1016/j.ijheatmasstransfer.2014.01.076
You do not currently have access to this content.