Abstract

Solder joints in micro-electronic assemblies experience a multiaxial combination of extensional and shear loads due to combinations of thermal expansion mismatch and flexure of printed circuit assemblies during thermal cycling or during vibrational loading of constrained printed circuit assemblies. Although a significant amount of research has been conducted to study cyclic fatigue failures of solder joints under pure-shear loading, most of the current literature on cyclic tensile loading of solders is on long dog-boned monolithic solder coupons. Unfortunately, such specimens do not capture the critical interactions between key microscale morphological features (such as grain orientation, grain boundaries, intermetallic compounds, and substrates) that are believed to play important roles in the fatigue of functional solder joints under life-cycle loading. Therefore, this paper uses a combination of experiments and finite element analysis to investigate the differences in mechanisms of cyclic fatigue damage in Sn-3.0Ag-0.5Cu (SAC305) few-grained (oligocrystalline) microscale solder joints under shear, tensile and multiaxial loading modes at room temperature. Cyclic fatigue durability test results indicate that tensile loads are more detrimental compared to shear loads. Tensile versus shear loading modes are found to cause distinctly different combinations of interfacial damage versus internal damage in the bulk of the solder (transgranular and intergranular damage), which correlates with the differences observed in the resulting fatigue durability. The test results also confirm that the traditional approach of assuming a power-law dependence on equivalent deviatoric strain amplitude is inadequate for modeling cyclic fatigue durability of solder interconnects experiencing multiaxial loading. Instead, multiaxial fatigue damage results are seen to be affected not only by the cyclic equivalent strain amplitudes but also by the severity of the stress-triaxiality, as hypothesized in models such as Chaboche model.

References

1.
Li
,
N. M.
,
Das
,
D.
, and
Pecht
,
M.
,
2017
, “
Shelf Life Evaluation Method for Electronic and Other Components Using a Physics of Failure (PoF) Approach
,”
Machinery Failure Prevention Technology (MFPT) Conference
, Virginia Beach, VA, May 15.https://www.researchgate.net/publication/317068978_SHELF_LIFE_EVALUATION_METHOD_FOR_ELECTRONIC_AND_OTHER_COMPONENTS_USING_A_PHYSICSOF-FAILURE_POF_APPROACH
2.
Perkins
,
A. E.
, and
Sitaraman
,
S. K.
,
2008
,
Solder Joint Reliability Prediction for Multiple Environments
,
Springer US
,
Berlin
.
3.
Métais
,
B.
,
Kuczynska
,
M.
,
Kabakchiev
,
A.
,
Wolfangel
,
S.
,
Buhl
,
P.
, and
Weihe
,
S.
,
2016
, “
Experimental and Numerical Investigation of Fatigue Damage Development Under Multiaxial Loads in a Lead-Free Sn-Based Solder Alloy
,” 2016 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Montpellier, France, Apr. 18–20, pp.
1
7
.10.1109/EuroSimE.2016.7463378
4.
Rajmane
,
P.
,
2018
,
Multi-Physics Design Optimization of 2D and Advanced Heterogenous 3D Integrated Circuits
,
University of Texas at Arlington
,
TX
.
5.
Rajmane
,
P.
,
2015
,
Chip Package Interaction Study to Analyze the Mechanical Integrity of a 3-D TSV Package
,
University of Texas at Arlington
,
TX
.
6.
Rooney
,
D. T.
,
Todd Castello
,
N.
,
Cibulsky
,
M.
,
Abbott
,
D.
, and
Xie
,
D.
,
2004
, “
Materials Characterization of the Effect of Mechanical Bending on Area Array Package Interconnects
,”
Microelectron. Reliab.
,
44
(
2
), pp.
275
285
.10.1016/S0026-2714(03)00193-8
7.
Liang
,
J.
,
Downes
,
S.
,
Dariavach
,
N.
,
Shangguan
,
D.
, and
Heinrich
,
S. M.
,
2004
, “
Effects of Load and Thermal Conditions on Pb-Free Solder Joint Reliability
,”
J. Electron. Mater.
,
33
(
12
), pp.
1507
1515
.10.1007/s11664-004-0092-z
8.
Darveaux
,
R.
,
2005
, “
Shear Deformation of Lead-Free Solder Joints
,”
Proceedings Electronic Components and Technology, 2005. ECTC '05
, pp.
882
893
.
Lake Buena Vista, FL
, Vol.
1
.
9.
Pang
,
J. H. L.
,
Hong Tan
,
K.
,
Shi
,
X.
, and
Wang
,
Z. P.
, March
2001
, “
Thermal Cycling Aging Effects on Microstructural and Mechanical Properties of a Single PBGA Solder Joint Specimen
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
1
), pp.
10
15
.10.1109/6144.910796
10.
H. Lau
,
J.
,
1991
,
Solder Joint Reliability: Theory and Applications
, Springer US, Berlin.
11.
Fu
,
N.
,
Suhling
,
J. C.
,
Hamasha
,
S.
, and
Lall
,
P.
,
2017
, “
Evolution of the Cyclic Stress-Strain and Constitutive Behaviors of SAC305 Lead Free Solder During Fatigue Testing
,” 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Orlando, FL
, pp.
1353
1360
.10.1109/ITHERM.2017.7992639
12.
Andersson
,
C.
,
Lai
,
Z.
,
Liu
,
J.
,
Jiang
,
H.
, and
Yu
,
Y.
,
2005
, “
Comparison of Isothermal Mechanical Fatigue Properties of Lead-Free Solder Joints and Bulk Solders
,”
Mater. Sci. Eng.: A
,
394
(
1–2
), pp.
20
27
.10.1016/j.msea.2004.10.043
13.
Mukherjee
,
S.
,
Zhou
,
B.
,
Dasgupta
,
A.
, and
Bieler
,
T. R.
,
2016
, “
Multiscale Modeling of the Anisotropic Transient Creep Response of Heterogeneous Single Crystal SnAgCu Solder
,”
Int. J. Plasticity
,
78
, pp.
1
25
.10.1016/j.ijplas.2015.10.011
14.
Bieler
,
T. R.
,
Jiang
,
H.
,
Lehman
,
L. P.
,
Kirkpatrick
,
T.
,
Cotts
,
E. J.
, and
Nandagopal
,
B.
,
2008
, “
Influence of Sn Grain Size and Orientation on the Thermomechanical Response and Reliability of Pb-Free Solder Joints
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(
2)
, pp.
370
381
.
15.
Jiang
,
Q.
,
Deshpande
,
A.
, and
Dasgupta
,
A.
,
2019
, “
Elastic Behavior of Coarse Grained SnAgCu (SAC) Solder Joints Based on an Anisotropic Multi-Scale Predictive Modeling Approach
,”
J. Electron. Mater.
,
48
(
12
), pp.
8076
8088
.10.1007/s11664-019-07576-x
16.
Zimprich
,
P.
,
Betzwar-Kotas
,
A.
,
Khatibi
,
G.
,
Weiss
,
B.
, and
Ipser
,
H.
,
2008
, “
Size Effects in Small Scaled Lead-Free Solder Joints
,”
J. Mater. Sci: Mater. Electron
,
19
(
4
), pp.
383
388
.10.1007/s10854-007-9349-7
17.
Ranieri
,
J. P.
,
Lauten
,
F. S.
, and
Avery
,
D. H.
,
1995
, “
Plastic Constraint of Large Aspect Ratio Solder Joints
,”
JEM
,
24
(
10
), pp.
1419
1423
.10.1007/BF02655458
18.
Zhang
,
Q. K.
,
Zou
,
H. F.
, and
Zhang
,
Z. F.
,
2009
, “
Tensile and Fatigue Behaviors of Aged Cu/Sn-4Ag Solder Joints
,”
J. Electron. Mater.
,
38
(
6
), pp.
852
859
.10.1007/s11664-009-0769-4
19.
Haswell
,
P.
,
2001
, “
Durability Assessment and Microstructural Observations of Selected Solder Alloys
,” Ph.D. Dissertation,
University of Maryland
,
College Park, MD
.
20.
Deshpande
,
A.
,
Jiang
,
Q.
, and
Dasgupta
,
A.
,
2018
, “
A Joint-Scale Test Specimen for Tensile Properties of Solder Alloys
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
San Diego, CA
, pp.
1309
1313
.10.1109/ITHERM.2018.8419581
21.
Deshpande
,
A.
,
Kaeser
,
H.
, and
Dasgupta
,
A.
,
2019
, “
Effect of Stress State on Fatigue Characterization of SAC305 Solder Joints
,” 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
), Hannover, Germany, Mar. 24–27, pp.
1
3
.10.1109/EuroSimE.2019.8724547
22.
Mukherjee
,
S.
, and
Dasgupta
,
A.
,
2011
, “
An Evaluation of a Modified Iosipescu Specimen for Measurement of Elastic-Plastic-Creep Properties of Solder Materials
,” T. Proulx, ed., Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Vol. 3,
Conference Proceedings of the Society for Experimental Mechanics Series
, Springer, New York, pp.
159
161
.10.1007/978-1-4614-0213-8_24
23.
Arfaei
,
B.
,
Wentlent
,
L.
,
Joshi
,
S.
,
Alazzam
,
A.
,
Tashtoush
,
T.
,
Halaweh
,
M.
,
Chivukula
,
S.
,
Yin
,
L.
,
Meilunas
,
M.
,
Cotts
,
E.
, and
Borgesen
,
P.
,
2012
, “
Improving the Thermomechanical Behavior of Lead Free Solder Joints by Controlling the Microstructure
,”
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 30–June 1, pp.
392
398
.10.1109/ITHERM.2012.6231456
24.
Deshpande
,
A.
,
Jiang
,
Q.
,
Dasgupta
,
A.
, and
Becker
,
U.
,
2018
, “
Fatigue Life of Joint-Scale SAC305 Solder Specimens in Tensile and Shear Mode
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp. 1026–1029.10.1109/ITHERM.2019.8757405
25.
KuczynskaSchafet
,
M.
,
Becker
,
N.
,
Métais
,
U.
,
Kabakchiev
,
B.
,
Buhl
,
A.
, and
Weihe
,
P. S.
,
2016
, “
The Role of Stress State and Stress Triaxiality in Lifetime Prediction of Solder Joints in Different Packages Utilized in Automotive Electronics
,” 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (
EuroSimE
),
Montpellier
, pp.
1
10
.10.1109/EuroSimE.2016.7463328
26.
Ma
,
H.
,
Suhling
,
J. C.
,
Zhang
,
Y.
,
Lall
,
P.
, and
Bozack
,
M. J.
,
2007
, “
The Influence of Elevated Temperature Aging on Reliability of Lead Free Solder Joints
,”
Proceedings 57th Electronic Components and Technology Conference
,
Sparks, NV
, May 29–June 1, pp.
653
668
.10.1109/ECTC.2007.373867
27.
Barker
,
D. B.
,
Vodzak
,
J.
,
Dasgupta
,
A.
, and
Pecht
,
M.
,
1990
, “
Combined Vibrational and Thermal Solder Joint Fatigue: A Generalized Strain Versus Life Approach
,”
ASME J. Electron. Packag.
,
112
(
2
), pp.
129
134
.10.1115/1.2904353
You do not currently have access to this content.